Efficient-Tuning-LLMs 项目教程

Efficient-Tuning-LLMs 项目教程

Efficient-Tuning-LLMsEasy and Efficient Finetuning of QLoRA LLMs. (Supported LLama, LLama2, bloom, Baichuan, GLM , Falcon) 大模型高效量化训练+部署. 项目地址:https://gitcode.com/gh_mirrors/ef/Efficient-Tuning-LLMs

项目介绍

Efficient-Tuning-LLMs 是一个用于高效微调大型语言模型(LLMs)的开源工具包。该项目支持在几乎所有GPU上进行预训练和微调,能够自动分发高性能操作符如FlashAttention和Triton内核以提高训练吞吐量,并兼容DeepSpeed,轻松利用多种ZeRO优化技术。此外,它支持多种LLMs(如Llama、Mixtral、ChatGLM、Qwen、Baichuan)和VLM(如LLaVA),并提供灵活的数据管道,适应各种格式的数据集。

项目快速启动

克隆代码

首先,克隆项目仓库并导航到项目文件夹:

git clone https://github.com/jianzhnie/Efficient-Tuning-LLMs.git
cd Efficient-Tuning-LLMs

安装依赖

安装必要的依赖项:

pip install -r requirements.txt

运行示例

运行一个简单的微调示例:

python scripts/finetune.py --model_name_or_path path_to_your_model --dataset_name your_dataset --output_dir output_directory

应用案例和最佳实践

案例一:在单个8GB GPU上微调7B模型

使用LLamaTuner,可以在单个8GB GPU上微调7B模型,示例如下:

python scripts/finetune.py --model_name_or_path 7B_model --dataset_name custom_dataset --output_dir output_directory --gpu_memory 8GB

案例二:多节点微调超过70B模型

对于超过70B的模型,可以使用多节点微调:

deepspeed scripts/multi_node_finetune.py --model_name_or_path 70B_model --dataset_name large_dataset --output_dir output_directory

典型生态项目

DeepSpeed

DeepSpeed 是一个深度学习优化库,提供了ZeRO优化技术,可以显著减少内存占用并加速训练过程。Efficient-Tuning-LLMs 与DeepSpeed兼容,可以轻松利用其优化技术。

FlashAttention

FlashAttention 是一种高性能注意力机制,可以加速训练过程中的注意力计算。Efficient-Tuning-LLMs 自动分发FlashAttention内核,提高训练吞吐量。

Triton

Triton 是一个用于编写高性能GPU内核的编程语言。Efficient-Tuning-LLMs 使用Triton内核来优化特定操作,进一步提升性能。

通过以上模块的介绍和示例,您可以快速上手并利用Efficient-Tuning-LLMs进行大型语言模型的高效微调。

Efficient-Tuning-LLMsEasy and Efficient Finetuning of QLoRA LLMs. (Supported LLama, LLama2, bloom, Baichuan, GLM , Falcon) 大模型高效量化训练+部署. 项目地址:https://gitcode.com/gh_mirrors/ef/Efficient-Tuning-LLMs

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杜腾金Beguiling

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值