multi-swe-bench:多语言代码问题解决评估的多语言基准

multi-swe-bench:多语言代码问题解决评估的多语言基准

multi-swe-bench Multi-SWE-bench: A Multilingual Benchmark for Issue Resolving multi-swe-bench 项目地址: https://gitcode.com/gh_mirrors/mu/multi-swe-bench

项目介绍

今天,我们要介绍的是一个名为multi-swe-bench的开源项目。该项目由字节跳动的Seed团队开发,旨在解决目前缺乏针对真实世界代码问题解决的大型语言模型(LLM)的多语言评估基准问题。不同于现有的以Python为中心的基准(如SWE-bench),multi-swe-bench框架涵盖了包括Java、TypeScript、JavaScript、Go、Rust、C和C++在内的7种语言,共有1,632个经过68位专家标注的高质量实例,从2,456个候选实例中精心挑选而来,以确保评估的可靠性。

项目技术分析

multi-swe-bench项目使用了先进的技术手段,将现实世界中的代码问题解决转化为一个评估大型语言模型性能的标准化任务。该项目的核心在于构建一个全面、多语言的评估框架,它不仅支持多种编程语言,还能够评估不同模型和框架在代码问题解决方面的能力。通过这种全面的评估,研究人员可以更好地理解各种模型在不同语言和场景下的表现,进而推动自动问题解决和强化学习领域的发展。

项目技术应用场景

multi-swe-bench项目在多个场景下都有广泛的应用潜力。例如,在软件开发过程中,它可以用来评估和改进代码自动修复工具,帮助开发者快速定位和解决问题。在学术研究中,它可以为研究者提供一个统一的评估平台,以便于比较不同模型和算法的性能。此外,该项目还可以作为教育工具,帮助学生和从业者更好地理解代码问题解决的复杂性和挑战。

项目特点

以下是multi-swe-bench项目的几个主要特点:

  1. 全面的评估:项目评估了包括GPT-4o、OpenAI-o1、OpenAI-o3-mini-high等在内的九种强大模型,并使用了三种不同的Agent框架(Agentless、SWE-agent、OpenHands),得出了许多有价值的见解。

  2. Multi-SWE-RL社区:这是一个开源的社区,专注于大规模强化学习数据集的创建。初始版本包括4,723个实例,旨在推动强化学习研究的发展。

  3. 完全开源:所有数据、代码和容器镜像都已公开发布,并附有详细的教程,以促进社区的贡献和可扩展的扩展。

总结

multi-swe-bench项目为代码问题解决的自动化评估提供了一个全新的视角和多语言支持。通过该项目,研究者可以更好地理解大型语言模型在解决真实世界代码问题时的表现,为软件开发、学术研究和教育领域带来了新的可能性。如果你对自动化代码问题解决感兴趣,或者希望为AI研究做出贡献,multi-swe-bench项目绝对值得你的关注。


本文关键字:multi-swe-bench、多语言评估、代码问题解决、自动修复、强化学习、开源项目、软件开发、学术研究。

multi-swe-bench Multi-SWE-bench: A Multilingual Benchmark for Issue Resolving multi-swe-bench 项目地址: https://gitcode.com/gh_mirrors/mu/multi-swe-bench

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

霍薇樱Quintessa

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值