RK3399Pro NPU 开源项目使用教程

RK3399Pro NPU 开源项目使用教程

RK3399Pro_npu RK3399Pro_npu 项目地址: https://gitcode.com/gh_mirrors/rk/RK3399Pro_npu

1. 项目介绍

1.1 项目概述

RK3399Pro NPU 开源项目是为 Rockchip RK3399Pro 平台提供的 NPU(神经网络处理单元)驱动及相关示例代码的集合。该项目旨在帮助开发者快速上手并充分利用 RK3399Pro 的 NPU 功能,适用于多种 AI 应用场景。

1.2 主要功能

  • NPU 驱动:提供 RK3399Pro 的 NPU 驱动,支持通过 USB 和 PCIe 接口与 NPU 通信。
  • 示例代码:包含多个示例代码,展示如何使用 RKNN API 进行模型推理。
  • 工具包:提供 RKNN Toolkit 和 RKNN Toolkit Lite,用于模型转换和推理。

2. 项目快速启动

2.1 环境准备

确保你的开发环境已经安装了以下工具和依赖:

  • Git
  • Python 3.x
  • RKNN Toolkit 或 RKNN Toolkit Lite

2.2 克隆项目

首先,克隆 RK3399Pro NPU 开源项目到本地:

git clone https://github.com/airockchip/RK3399Pro_npu.git
cd RK3399Pro_npu

2.3 安装依赖

根据你的操作系统,安装相应的依赖包:

# 安装 RKNN Toolkit 依赖
pip install rknn-toolkit

# 安装 RKNN Toolkit Lite 依赖
pip install rknn-toolkit-lite

2.4 运行示例代码

进入示例代码目录,运行一个简单的推理示例:

cd examples/simple_inference
python3 simple_inference.py

3. 应用案例和最佳实践

3.1 目标检测

使用 RK3399Pro NPU 进行目标检测是一个常见的应用场景。你可以使用 RKNN Toolkit 将 YOLOv8 模型转换为 RKNN 模型,并在 RK3399Pro 上进行推理。

from rknn.api import RKNN

# 初始化 RKNN 对象
rknn = RKNN()

# 加载模型
rknn.load_rknn('./yolov8.rknn')

# 初始化模型
rknn.init_runtime()

# 进行推理
outputs = rknn.inference(inputs=[input_data])

3.2 图像分类

图像分类是另一个常见的应用场景。你可以使用 RKNN Toolkit 将常见的图像分类模型(如 ResNet)转换为 RKNN 模型,并在 RK3399Pro 上进行推理。

from rknn.api import RKNN

# 初始化 RKNN 对象
rknn = RKNN()

# 加载模型
rknn.load_rknn('./resnet.rknn')

# 初始化模型
rknn.init_runtime()

# 进行推理
outputs = rknn.inference(inputs=[input_data])

4. 典型生态项目

4.1 RKNN Toolkit

RKNN Toolkit 是一个用于模型转换和推理的工具包,支持将常见的深度学习模型(如 TensorFlow、PyTorch 等)转换为 RKNN 模型,并在 RK3399Pro 上进行推理。

4.2 RKNN Toolkit Lite

RKNN Toolkit Lite 是一个轻量级的工具包,适用于资源受限的设备。它提供了基本的模型转换和推理功能,适合在嵌入式设备上使用。

4.3 Rock-X SDK

Rock-X SDK 是 Rockchip 提供的一套 AI 应用开发工具包,包含多个预训练模型和示例代码,适用于 RK3399Pro 等平台。

通过以上模块的介绍和示例代码,你可以快速上手并充分利用 RK3399Pro NPU 开源项目,开发出高效的 AI 应用。

RK3399Pro_npu RK3399Pro_npu 项目地址: https://gitcode.com/gh_mirrors/rk/RK3399Pro_npu

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

韶丰业

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值