RK3399Pro NPU 开源项目使用教程
RK3399Pro_npu 项目地址: https://gitcode.com/gh_mirrors/rk/RK3399Pro_npu
1. 项目介绍
1.1 项目概述
RK3399Pro NPU 开源项目是为 Rockchip RK3399Pro 平台提供的 NPU(神经网络处理单元)驱动及相关示例代码的集合。该项目旨在帮助开发者快速上手并充分利用 RK3399Pro 的 NPU 功能,适用于多种 AI 应用场景。
1.2 主要功能
- NPU 驱动:提供 RK3399Pro 的 NPU 驱动,支持通过 USB 和 PCIe 接口与 NPU 通信。
- 示例代码:包含多个示例代码,展示如何使用 RKNN API 进行模型推理。
- 工具包:提供 RKNN Toolkit 和 RKNN Toolkit Lite,用于模型转换和推理。
2. 项目快速启动
2.1 环境准备
确保你的开发环境已经安装了以下工具和依赖:
- Git
- Python 3.x
- RKNN Toolkit 或 RKNN Toolkit Lite
2.2 克隆项目
首先,克隆 RK3399Pro NPU 开源项目到本地:
git clone https://github.com/airockchip/RK3399Pro_npu.git
cd RK3399Pro_npu
2.3 安装依赖
根据你的操作系统,安装相应的依赖包:
# 安装 RKNN Toolkit 依赖
pip install rknn-toolkit
# 安装 RKNN Toolkit Lite 依赖
pip install rknn-toolkit-lite
2.4 运行示例代码
进入示例代码目录,运行一个简单的推理示例:
cd examples/simple_inference
python3 simple_inference.py
3. 应用案例和最佳实践
3.1 目标检测
使用 RK3399Pro NPU 进行目标检测是一个常见的应用场景。你可以使用 RKNN Toolkit 将 YOLOv8 模型转换为 RKNN 模型,并在 RK3399Pro 上进行推理。
from rknn.api import RKNN
# 初始化 RKNN 对象
rknn = RKNN()
# 加载模型
rknn.load_rknn('./yolov8.rknn')
# 初始化模型
rknn.init_runtime()
# 进行推理
outputs = rknn.inference(inputs=[input_data])
3.2 图像分类
图像分类是另一个常见的应用场景。你可以使用 RKNN Toolkit 将常见的图像分类模型(如 ResNet)转换为 RKNN 模型,并在 RK3399Pro 上进行推理。
from rknn.api import RKNN
# 初始化 RKNN 对象
rknn = RKNN()
# 加载模型
rknn.load_rknn('./resnet.rknn')
# 初始化模型
rknn.init_runtime()
# 进行推理
outputs = rknn.inference(inputs=[input_data])
4. 典型生态项目
4.1 RKNN Toolkit
RKNN Toolkit 是一个用于模型转换和推理的工具包,支持将常见的深度学习模型(如 TensorFlow、PyTorch 等)转换为 RKNN 模型,并在 RK3399Pro 上进行推理。
4.2 RKNN Toolkit Lite
RKNN Toolkit Lite 是一个轻量级的工具包,适用于资源受限的设备。它提供了基本的模型转换和推理功能,适合在嵌入式设备上使用。
4.3 Rock-X SDK
Rock-X SDK 是 Rockchip 提供的一套 AI 应用开发工具包,包含多个预训练模型和示例代码,适用于 RK3399Pro 等平台。
通过以上模块的介绍和示例代码,你可以快速上手并充分利用 RK3399Pro NPU 开源项目,开发出高效的 AI 应用。
RK3399Pro_npu 项目地址: https://gitcode.com/gh_mirrors/rk/RK3399Pro_npu
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考