NeuralRecon 开源项目教程

NeuralRecon 开源项目教程

NeuralReconCode for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral项目地址:https://gitcode.com/gh_mirrors/ne/NeuralRecon

1. 项目的目录结构及介绍

NeuralRecon 项目的目录结构如下:

NeuralRecon/
├── assets/
├── configs/
├── datasets/
├── docs/
├── eval/
├── models/
├── ops/
├── scripts/
├── src/
├── tests/
├── tools/
├── train.py
├── eval.py
├── README.md
└── requirements.txt

目录介绍:

  • assets/: 包含项目相关的静态资源文件。
  • configs/: 包含项目的配置文件。
  • datasets/: 用于存放数据集的目录。
  • docs/: 包含项目的文档文件。
  • eval/: 包含评估脚本和相关文件。
  • models/: 包含模型的定义和实现。
  • ops/: 包含自定义的运算操作。
  • scripts/: 包含一些辅助脚本。
  • src/: 包含项目的主要源代码。
  • tests/: 包含测试脚本和测试数据。
  • tools/: 包含一些实用工具。
  • train.py: 训练模型的主脚本。
  • eval.py: 评估模型的主脚本。
  • README.md: 项目的介绍和使用说明。
  • requirements.txt: 项目依赖的 Python 包列表。

2. 项目的启动文件介绍

train.py

train.py 是用于训练模型的主脚本。它负责加载数据、初始化模型、定义训练过程并执行训练。

eval.py

eval.py 是用于评估模型的主脚本。它负责加载数据、初始化模型、定义评估过程并执行评估。

3. 项目的配置文件介绍

configs/ 目录

configs/ 目录包含项目的配置文件,这些文件定义了模型的参数、训练的超参数、数据路径等。

示例配置文件
model:
  name: NeuralRecon
  input_size: [320, 240]
  num_classes: 13

train:
  batch_size: 8
  learning_rate: 0.001
  epochs: 100

data:
  train_path: datasets/train
  val_path: datasets/val

配置文件介绍

  • model: 定义模型的名称、输入尺寸和类别数。
  • train: 定义训练的批次大小、学习率和训练轮数。
  • data: 定义训练和验证数据的路径。

通过这些配置文件,用户可以方便地调整模型的参数和训练过程。

NeuralReconCode for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral项目地址:https://gitcode.com/gh_mirrors/ne/NeuralRecon

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张俊领Tilda

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值