NeuralRecon 开源项目教程
1. 项目的目录结构及介绍
NeuralRecon 项目的目录结构如下:
NeuralRecon/
├── assets/
├── configs/
├── datasets/
├── docs/
├── eval/
├── models/
├── ops/
├── scripts/
├── src/
├── tests/
├── tools/
├── train.py
├── eval.py
├── README.md
└── requirements.txt
目录介绍:
assets/
: 包含项目相关的静态资源文件。configs/
: 包含项目的配置文件。datasets/
: 用于存放数据集的目录。docs/
: 包含项目的文档文件。eval/
: 包含评估脚本和相关文件。models/
: 包含模型的定义和实现。ops/
: 包含自定义的运算操作。scripts/
: 包含一些辅助脚本。src/
: 包含项目的主要源代码。tests/
: 包含测试脚本和测试数据。tools/
: 包含一些实用工具。train.py
: 训练模型的主脚本。eval.py
: 评估模型的主脚本。README.md
: 项目的介绍和使用说明。requirements.txt
: 项目依赖的 Python 包列表。
2. 项目的启动文件介绍
train.py
train.py
是用于训练模型的主脚本。它负责加载数据、初始化模型、定义训练过程并执行训练。
eval.py
eval.py
是用于评估模型的主脚本。它负责加载数据、初始化模型、定义评估过程并执行评估。
3. 项目的配置文件介绍
configs/
目录
configs/
目录包含项目的配置文件,这些文件定义了模型的参数、训练的超参数、数据路径等。
示例配置文件
model:
name: NeuralRecon
input_size: [320, 240]
num_classes: 13
train:
batch_size: 8
learning_rate: 0.001
epochs: 100
data:
train_path: datasets/train
val_path: datasets/val
配置文件介绍
model
: 定义模型的名称、输入尺寸和类别数。train
: 定义训练的批次大小、学习率和训练轮数。data
: 定义训练和验证数据的路径。
通过这些配置文件,用户可以方便地调整模型的参数和训练过程。