如何使用 Distil-Whisper 进行语音识别

如何使用 Distil-Whisper 进行语音识别

distil-medium.en distil-medium.en 项目地址: https://gitcode.com/mirrors/distil-whisper/distil-medium.en

语音识别技术在当今社会扮演着越来越重要的角色,无论是在智能手机的个人助理、智能家居设备,还是企业级的语音交互系统,语音识别都是其核心功能之一。随着技术的进步,我们已经拥有了能够准确识别语音并转换为文本的模型。然而,这些模型往往需要大量的计算资源,这对于资源受限的环境来说是一个挑战。

为了解决这个问题,CSDN公司开发的InsCode AI大模型推出了Distil-Whisper模型。这是一个经过优化的语音识别模型,它在保持高准确率的同时,大大降低了运行时间和内存占用。本文将详细介绍如何使用Distil-Whisper进行语音识别。

准备工作

在使用Distil-Whisper之前,您需要配置合适的环境。Distil-Whisper支持Python编程语言,并且需要安装transformers库。您可以通过以下命令安装最新版本的transformers库:

pip install --upgrade pip
pip install --upgrade transformers accelerate datasets[audio]

同时,您还需要准备一些音频数据,这些数据将被用于模型的训练和测试。您可以从Hugging Face Hub或其他数据集网站获取这些数据。

模型使用步骤

数据预处理

在使用Distil-Whisper之前,您需要对音频数据进行预处理。预处理步骤可能包括音频的标准化、分帧、加窗等。Distil-Whisper的AutoProcessor类可以帮助您完成这些预处理工作。

from transformers import AutoProcessor

model_id = "distil-whisper/distil-medium.en"
processor = AutoProcessor.from_pretrained(model_id)

模型加载和配置

接下来,您需要加载Distil-Whisper模型,并进行一些配置。Distil-Whisper的AutoModelForSpeechSeq2Seq类可以帮助您完成这些工作。

from transformers import AutoModelForSpeechSeq2Seq

model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id)

任务执行流程

加载模型后,您可以使用Distil-Whisper进行语音识别。Distil-Whisper提供了pipeline类,它可以简化语音识别的流程。

from transformers import pipeline

pipe = pipeline("automatic-speech-recognition", model=model)

您可以使用pipeline类对音频数据进行识别,并获取识别结果。

dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
sample = dataset[0]["audio"]

result = pipe(sample)
print(result["text"])

结果分析

Distil-Whisper的识别结果通常具有较高的准确率。您可以通过与人工转录的文本进行比较,来评估模型的性能。此外,您还可以使用一些评估指标,如词错误率(WER),来衡量模型的性能。

结论

Distil-Whisper是一个高效且准确的语音识别模型,它可以帮助您在资源受限的环境中实现高性能的语音识别。通过本文的介绍,您应该已经了解了如何使用Distil-Whisper进行语音识别。如果您有任何问题,请随时访问https://huggingface.co/distil-whisper/distil-medium.en获取帮助。

distil-medium.en distil-medium.en 项目地址: https://gitcode.com/mirrors/distil-whisper/distil-medium.en

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/ab6ed9424307 【五轴后处理 CAM_C++】项目聚焦于高级数控加工技术,核心目标是把.CLS格式文件转化为5轴CNC机床可执行的G代码。G代码作为CNC机床的专属语言,能精准操控机床的切割速度、进给速率以及刀具路径等操作。该过程被称作后处理,是将CAM系统生成的刀具路径数据转变为机器能识别代码的最终环节。 项目涵盖三个工程,分别对应不同的5轴配置。其一,POST_5axis_double_table_AC是双转台配置,A轴转台绕垂直轴旋转,C轴转台绕水平轴旋转,工件置于A轴转台上。此配置利于加工复杂工件表面,在航空、航天及模具制造领域应用广泛。其二,POST_hand_machine工程对应臂式5轴机器,其机械臂结构赋予了更大的工作范围与灵活性,尤其适合加工大型或形状不规则工件,可实现多角度、全方位切割。其三,POST_5axis_head_bc工程为BC轴配置,B轴是主轴旋转,C轴是附加旋转轴,工件可在两个水平轴上旋转,能处理精细三维轮廓工件,拓展了加工能力。 在这些工程里,包含了众多5轴加工算法,这些算法对理解与优化5轴CNC运动控制极为关键。它们涵盖刀具路径规划、误差补偿、动态控制等诸多方面,需考量刀具与工件相对位置、切削力、工件变形等要素,其优化程度直接关联加工精度、效率及刀具寿命。此资源对于学习和研究5轴CNC后处理技术极具参考价值,工程师通过深入研究源代码和算法,能更好地理解并定制自己的5轴CNC后处理器,以满足特定加工需求,提高生产效率和产品质量。对于有志于踏入高级数控加工领域的人而言,无论是学习者还是从业者,该资源都是一个珍贵的资料库,能提供实践操作和理论学习的良机。
### 使用 Whisper 语音识别模型的实现与应用 #### 安装依赖库 为了使用 `openai-whisper` 及其支持的各种模型,包括 Distil-Whisper,在开始之前需安装必要的 Python 库。通常情况下,这可以通过 pip 来完成。 ```bash pip install git+https://github.com/openai/whisper.git ``` #### 加载预训练模型 加载特定版本的模型非常简单。对于希望使用Distil-Whisper 模型而言,代码如下所示: ```python import whisper model = whisper.load_model("distil-medium") # 或者 "distil-large" ``` 此处 `"distil-medium"` 和 `"distil-large"` 是两种不同大小的 Distil-Whisper 模型名称[^1]。 #### 执行音频转文字任务 一旦选择了合适的模型并成功加载之后,就可以调用该模型来处理实际的任务——将输入的声音文件转换成相应的文本描述。下面是一个简单的例子说明如何做到这一点: ```python audio_file_path = "./example_audio.mp3" result = model.transcribe(audio_file_path) print(result["text"]) ``` 这段程序会读取指定路径下的 MP3 文件作为输入源,并输出由模型推测出来的对应的文字内容。 #### 处理多语言环境中的音频数据 值得注意的是,OpenAI 的 Whisper 不仅限于英语,还能够很好地适应其他多种自然语言。这意味着即使面对非英文发音的内容也能保持较高的准确性。如果想要让系统自动检测所给定录音片段的语言种类,则可以在调用 transcribe 方法时加入额外参数 language=None 即可。 ```python result_auto_lang_detect = model.transcribe(audio_file_path, language=None) detected_language_code = result_auto_lang_detect['language'] transcribed_text = result_auto_lang_detect["text"] print(f"Detected Language Code: {detected_language_code}") print(transcribed_text) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

裘芳林Farley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值