OCR常用公开数据集整理
OCR常用公开数据集整理 项目地址: https://gitcode.com/Resource-Bundle-Collection/760e6
本仓库致力于为研究人员和开发者提供一份详尽的OCR(光学字符识别)公开数据集指南,涵盖了多种语言和场景的文本识别与检测数据。这些数据集对于训练和测试OCR系统至关重要,能帮助开发者提升模型在真实世界条件下的表现。以下是精心挑选的部分数据集概览,它们适用于不同的研究和开发需求:
主要数据集列表:
-
ICDAR系列:
- ICDAR 2013: 包含英文的自然场景图片,适用于基础的OCR训练。
- ICDAR 2015: 提供更为复杂的四点标注,适合多边形文本框的识别训练。
- ICDAR2017-MLT: 多语言文本数据集,适合跨国界OCR研究。
-
特殊场景数据集:
- ICDAR2017-RCTW: 专注于中文街头文本的识别,丰富了中文OCR的研究范围。
- Synth800k: 由合成场景文本组成,非常适合初始化模型训练。
-
大规模中文数据集:
- 360万中文数据集: 强大的中文字符数据,适合深度学习的大规模训练。
- 中文街景数据集CTW: 提供了大量的中文字符标注的街景图片,有助于复杂环境下的字符识别。
-
混合语言与特定任务数据集:
- ICDAR2019-MLT 更新版: 解决了原始数据集中存在的标签问题,优化了混合语言的训练体验。
- ICDAR2019-LSVT: 专为中文街景文本设计,含有大量未经严格标注的数据,适合弱监督学习。
数据集特点:
- 格式多样:数据集包含JSON和TXT两种标签格式,满足不同项目的需求。
- 难度分级:部分数据集如ICDAR2019-ArT,提供了难度不同的文本,便于针对性训练。
- 标注精确:多数数据集采用四点坐标标注,适合复杂的文字检测任务。
- 语言覆盖广泛:从单一语言到多语言混合,适合多国语言OCR系统的研发。
使用指导:
- 本仓库不仅提供数据集链接,还包括必要的标签转换脚本,如将JSON标签转换为TXT格式。
- 注意某些数据集的特殊性,比如图像格式或标签格式的异常,确保在使用前进行适当的预处理。
- 对于未提供的测试标签,指引访问官方网址进行成绩提交评估。
获取与贡献:
- 数据集的具体下载链接、提取码以及使用注意事项,请参照上述链接的详细文章。
- 开发者鼓励社区成员参与,共享更多资源或反馈数据集中遇到的问题,共同促进OCR技术的进步。
通过本资源,开发者可以获得一站式解决方案,加速OCR相关项目的进展。记得在使用数据集时,遵守各自的版权规定,并适当引用来源。
OCR常用公开数据集整理 项目地址: https://gitcode.com/Resource-Bundle-Collection/760e6