OCR常用公开数据集整理

OCR常用公开数据集整理

OCR常用公开数据集整理 OCR常用公开数据集整理 项目地址: https://gitcode.com/Resource-Bundle-Collection/760e6

本仓库致力于为研究人员和开发者提供一份详尽的OCR(光学字符识别)公开数据集指南,涵盖了多种语言和场景的文本识别与检测数据。这些数据集对于训练和测试OCR系统至关重要,能帮助开发者提升模型在真实世界条件下的表现。以下是精心挑选的部分数据集概览,它们适用于不同的研究和开发需求:

主要数据集列表:

  • ICDAR系列:

    • ICDAR 2013: 包含英文的自然场景图片,适用于基础的OCR训练。
    • ICDAR 2015: 提供更为复杂的四点标注,适合多边形文本框的识别训练。
    • ICDAR2017-MLT: 多语言文本数据集,适合跨国界OCR研究。
  • 特殊场景数据集:

    • ICDAR2017-RCTW: 专注于中文街头文本的识别,丰富了中文OCR的研究范围。
    • Synth800k: 由合成场景文本组成,非常适合初始化模型训练。
  • 大规模中文数据集:

    • 360万中文数据集: 强大的中文字符数据,适合深度学习的大规模训练。
    • 中文街景数据集CTW: 提供了大量的中文字符标注的街景图片,有助于复杂环境下的字符识别。
  • 混合语言与特定任务数据集:

    • ICDAR2019-MLT 更新版: 解决了原始数据集中存在的标签问题,优化了混合语言的训练体验。
    • ICDAR2019-LSVT: 专为中文街景文本设计,含有大量未经严格标注的数据,适合弱监督学习。

数据集特点:

  • 格式多样:数据集包含JSON和TXT两种标签格式,满足不同项目的需求。
  • 难度分级:部分数据集如ICDAR2019-ArT,提供了难度不同的文本,便于针对性训练。
  • 标注精确:多数数据集采用四点坐标标注,适合复杂的文字检测任务。
  • 语言覆盖广泛:从单一语言到多语言混合,适合多国语言OCR系统的研发。

使用指导:

  • 本仓库不仅提供数据集链接,还包括必要的标签转换脚本,如将JSON标签转换为TXT格式。
  • 注意某些数据集的特殊性,比如图像格式或标签格式的异常,确保在使用前进行适当的预处理。
  • 对于未提供的测试标签,指引访问官方网址进行成绩提交评估。

获取与贡献:

  • 数据集的具体下载链接、提取码以及使用注意事项,请参照上述链接的详细文章。
  • 开发者鼓励社区成员参与,共享更多资源或反馈数据集中遇到的问题,共同促进OCR技术的进步。

通过本资源,开发者可以获得一站式解决方案,加速OCR相关项目的进展。记得在使用数据集时,遵守各自的版权规定,并适当引用来源。

OCR常用公开数据集整理 OCR常用公开数据集整理 项目地址: https://gitcode.com/Resource-Bundle-Collection/760e6

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎月嵘Robin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值