BPU部署教程:YOLOv5版本6.2部署指南
BPU部署教程教你搞定YOLOV5部署版本6.2 项目地址: https://gitcode.com/Resource-Bundle-Collection/8ff0a
本仓库提供了一个详细的教程,帮助用户在BPU(Brain Processing Unit)上成功部署YOLOv5版本6.2。教程内容涵盖了从环境配置到模型转换,再到上板运行的全过程。
内容概述
1. 环境配置
- 安装依赖包
- 运行YOLOv5
- PyTorch的pt模型文件转ONNX
2. ONNX模型转换
- 模型检查
- 准备校准数据
- 开始转换BPU模型
3. 上板运行
- 文件准备
- 运行推理代码
- 利用Cython封装后处理代码
使用说明
-
环境配置:
- 根据教程安装所需的Python环境和依赖包。
- 配置YOLOv5运行环境,确保能够正常运行YOLOv5模型。
-
ONNX模型转换:
- 将PyTorch的pt模型文件转换为ONNX格式。
- 使用BPU工具链进行模型检查和转换。
-
上板运行:
- 准备必要的文件并上传到BPU开发板。
- 运行推理代码,验证模型在BPU上的性能。
注意事项
- 本教程使用的YOLOv5版本为6.2,后续版本可能会有所不同。
- 模型转换过程中需要注意ONNX的opset版本,确保与BPU工具链兼容。
- 后处理部分可以通过Cython封装C++代码来加速。
通过本教程,您将能够顺利在BPU上部署YOLOv5模型,并进行高效的推理。
BPU部署教程教你搞定YOLOV5部署版本6.2 项目地址: https://gitcode.com/Resource-Bundle-Collection/8ff0a