Boruta-Shap: 高效特征选择与解释工具
博鲁塔沙普(Boruta-Shap)是一个高效的特征选择与解释工具,它基于Boruta特征选择算法和Shapley值,为用户提供了在选择特征子集的同时进行模型推断的能力。该工具在速度和生成的特征子集质量上均优于传统的排列重要性方法,是数据科学家和机器学习工程师的理想选择。
特性
-
集成Boruta与Shapley值:结合Boruta特征选择算法与Shapley值,提供更优质的特征子集和全局特征等级。
-
灵活的基础模型选择:不同于原始的R包限制用户仅能使用随机森林模型,BorutaShap允许用户选择任何基于树的学习器作为基础模型。
-
改进的运行时性能:包含采样过程,使用算法每次迭代时可用数据的最小可能子采样,显著降低运行时间。
-
适用于大型数据集:通过ks-test比较样本的隔离林产生的分布,有效解决SHAP TreeExplainer在大型数据集上的性能问题。
-
减少运行时间:实验表明,采样过程可将运行时间减少多达80%,提高计算效率。
注意事项
-
BorutaShap在处理大型数据集时,SHAP TreeExplainer的观察次数线性增长可能会影响性能。因此,建议在适当的情况下使用采样过程以优化运行时间。
-
用户需自行选择合适的基础模型进行特征选择,以获得最佳效果。
使用方法
请参考官方文档以获取BorutaShap的详细安装和使用说明。
版权信息
版权所有(C)2023 BorutaShap开发者团队。保留所有权利。
本文档旨在简要介绍BorutaShap工具,帮助用户了解其主要特性、优势和注意事项。如需更多信息,请查阅官方文档或相关论文。