3RScan:大规模室内环境实时重建数据集
3RScan 3RScan Toolkit 项目地址: https://gitcode.com/gh_mirrors/3r/3RScan
项目基础介绍及主要编程语言
3RScan 是一个大型的真实世界数据集,它包含了478个自然变化的室内环境的1482次3D重构快照。这个项目专为长期SLAM(Simultaneous Localization And Mapping)、场景变更检测以及对象实例重定位等前沿任务设计。项目基于MIT许可协议开源,主要编程语言是C++,辅以CMake进行构建管理。
核心功能
- 大规模3D数据集:提供了精细的3D重建模型,每个序列都附带了语义标注的3D数据和对应的2D图像帧。
- 深度学习与计算机视觉支撑:数据包括校准过的RGB-D序列、纹理化的3D网格、6DoF相机位姿和相机标定参数,支持深度学习和计算机视觉领域的研究和开发。
- 实例级语义分割:提供了每个实例具有固定ID的密集实例级语义分割,该ID在相同环境的不同序列中保持一致。
- 对象对齐与变换信息:包括改变物体的地面实况变换,及其对称性属性,非常适合对象识别与跟踪的研究。
最近更新的功能
由于提供的链接和信息没有直接展示最近的具体更新日志,我们无法提供精确到特定版本或日期的更新细节。然而,一般而言,此类开源项目可能会涉及的更新内容可能包含:
- 数据集扩充:增加更多场景或更丰富的数据,提升数据集的多样性和完整性。
- 代码优化:提高数据处理库的性能,简化API接口,使得数据加载和处理更为高效。
- 文档更新:改进说明文档,添加更多的使用示例,确保新手也能快速上手。
- 错误修复:解决社区反馈的问题,提高软件的稳定性和兼容性。
对于最新具体更新的内容,建议直接访问项目的GitHub页面查看最新的提交记录或Release笔记获取详细信息。
3RScan 3RScan Toolkit 项目地址: https://gitcode.com/gh_mirrors/3r/3RScan