Ollama完整教程:本地LLM管理、WebUI对话、Python/Java客户端API应用

老牛同学在前面有关大模型应用的文章中,多次使用了Ollama来管理和部署本地大模型(包括:Qwen2Llama3Phi3Gemma2等),但对Ollama这个非常方便管理本地大模型的软件的介绍却很少。

目前,清华和智谱 AI 联合发布开源的GLM4-9B大模型也能支持Ollama进行本地部署了(本地部署 GLM-4-9B 清华智谱开源大模型方法和对话效果体验),Ollama支持的大模型越多越普及,对于的应用也就越多。为了降低大家查阅资料等学习时间,老牛同学今天尝试着对 Ollama 进行一次详细完整介绍。毕竟老牛同学也在不断学习中,若有疏漏或者错误之处,还请各位朋友多多指正,谢谢大家。

本文将分为以下章节对 Ollama 进行介绍:

  1. Ollama 基本介绍,它的作用是什么
  2. Ollama 软件安装、一些常用的系统参数设置
  3. Ollama 管理本地已有大模型(包括终端对话界面)
  4. Ollama 导入模型到本地的三种方式:直接从 Ollama 远程仓库拉取、通过 GGUF 模型权重文件导入到本地、通过 safetensors 模型权限文件导入到本地
  5. 基于 WebUI 部署 Ollama 可视化对话界面
  6. Ollama 客户端 API 应用,包括 Python API 和 Java API 接口应用

Ollama 是什么,它与 Llama 有什么关系?

Ollama官网:https://ollama.com/,官方网站的介绍就一句话:Get up and running with large language models. (开始使用大语言模型。)

Ollama是一个开源的 LLM(大型语言模型)服务工具,用于简化在本地运行大语言模型、降低使用大语言模型的门槛,使得大模型的开发者、研究人员和爱好者能够在本地环境快速实验、管理和部署最新大语言模型,包括如Qwen2Llama3Phi3Gemma2等开源的大型语言模型。

Ollama支持的大语言模型列表,可通过搜索模型名称查看:https://ollama.com/library

Ollama官方 GitHub 源代码仓库:https://github.com/ollama/ollama/

Llama是 Meta 公司开源的备受欢迎的一个通用大语言模型,和其他大模型一样,Llama可以通过Ollama进行管理部署和推理等。

因此,OllamaLlama的关系:Llama是大语言模型,而Ollama是大语言模型(不限于Llama模型)便捷的管理和运维工具,它们只是名字后面部分恰巧相同而已!

Ollama官网

Ollama 安装和常用系统参数设置

在官网首页,我们可以直接下载Ollama安装程序(支持 Windows/MacOS/Linux):https://ollama.com/

Ollama的安装过程,与安装其他普通软件并没有什么两样,安装完成之后,有几个常用的系统环境变量参数建议进行设置:

  1. OLLAMA_MODELS:模型文件存放目录,默认目录为当前用户目录(Windows 目录:C:\Users%username%.ollama\models,MacOS 目录:~/.ollama/models,Linux 目录:/usr/share/ollama/.ollama/models),如果是 Windows 系统建议修改(如:D:\OllamaModels),避免 C 盘空间吃紧
  2. OLLAMA_HOST:Ollama 服务监听的网络地址,默认为127.0.0.1,如果允许其他电脑访问 Ollama(如:局域网中的其他电脑),建议设置0.0.0.0,从而允许其他网络访问
  3. OLLAMA_PORT:Ollama 服务监听的默认端口,默认为11434,如果端口有冲突,可以修改设置成其他端口(如:8080等)
  4. OLLAMA_ORIGINS:HTTP 客户端请求来源,半角逗号分隔列表,若本地使用无严格要求,可以设置成星号,代表不受限制
  5. OLLAMA_KEEP_ALIVE:大模型加载到内存中后的存活时间,默认为5m即 5 分钟(如:纯数字如 300 代表 300 秒,0 代表处理请求响应后立即卸载模型,任何负数则表示一直存活);我们可设置成24h,即模型在内存中保持 24 小时,提高访问速度
  6. OLLAMA_NUM_PARALLEL:请求处理并发数量,默认为1,即单并发串行处理请求,可根据实际情况进行调整
  7. OLLAMA_MAX_QUEUE:请求队列长度,默认值为512,可以根据情况设置,超过队列长度请求被抛弃
  8. OLLAMA_DEBUG:输出 Debug 日志标识,应用研发阶段可以设置成1,即输出详细日志信息,便于排查问题
  9. OLLAMA_MAX_LOADED_MODELS:最多同时加载到内存中模型的数量,默认为1,即只能有 1 个模型在内存中

Ollama 管理本地已有大模型

【展示本地大模型列表:ollama list

>ollama list
NAME            ID              SIZE    MODIFIED
gemma2:9b       c19987e1e6e2    5.4 GB  7 days ago
qwen2:7b        e0d4e1163c58    4.4 GB  10 days ago

可以看到,老牛同学本地有 2 个大模型,它们的名称(NAME)分别为gemma2:9bqwen2:7b

【删除单个本地大模型:ollama rm 本地模型名称

>ollama rm gemma2:9b
deleted 'gemma2:9b'

>ollama list
NAME            ID              SIZE    MODIFIED
qwen2:7b        e0d4e1163c58    4.4 GB  10 days ago

老牛同学通过rm命令删除了gemma2:9b大模型之后,再次通过list命令查看,本地只有qwen2:7b一个大模型了。

【启动本地模型:ollama run 本地模型名

>ollama run qwen2:0.5b
>>>

启动成功之后,就可以通过终端对话界面进行对话了(本命令下面也会讲到,其他详细暂且忽略)

【查看本地运行中模型列表:ollama ps

>ollama ps
NAME            ID              SIZE    PROCESSOR       UNTIL
qwen2:0.5b      6f48b936a09f    693 MB  100% CPU        4 minutes from now

通过ps命名可以看到,老牛同学本地qwen2:0.5b大模型正在运行中。

【复制本地大模型:ollama cp 本地存在的模型名 新复制模型名

>ollama cp qwen2:0.5b Qwen2-0.5B
copied 'qwen2:0.5b' to 'Qwen2-0.5B'

>ollama list
NAME                    ID              SIZE    MODIFIED
Qwen2-0.5B:latest       6f48b936a09f    352 MB  4 seconds ago
qwen2:0.5b              6f48b936a09f    352
### Open Web UI与DeepSeek使用指南 #### 介绍 OpenWebUI 是一种用于管理和操作大型语言模型(LLM)的图形化用户界面工具,而 DeepSeek 则提供了一套完整的解决方案来帮助开发者更好地利用这些模型。Ollama 工具不仅支持 WebUI 对话功能,还提供了针对 PythonJava客户端 API 接口[^2]。 #### 安装配置 为了启动并运行基于 OpenWebUI 的项目,通常需要先完成环境搭建工作。这可能涉及到安装特定版本的 Node.js 或者其他依赖项。对于想要快速上手的新手来说,可以参照官方文档中的指导来进行设置。一旦完成了必要的准备工作之后,就可以通过命令行或者其他方式加载预训练好的 LLM 并开启交互模式了[^1]。 #### 功能特性 - **多平台兼容**:无论是 Windows、macOS 还是 Linux 系统都能顺利适配; - **直观易懂的操作面板**:使得即使是初次接触此类软件的人也能迅速理解各项参数的意义及其调整方法; - **丰富的插件生态**:允许第三方开发者贡献更多实用的功能模块给社区共享; #### 实际案例展示 下面给出一段简单的Python脚本作为例子,展示了怎样借助 Ollama 提供的服务接口实现基本对话交流: ```python from ollama import Client, Message client = Client(api_key='your_api_key_here') message = Message(content="你好啊!") response = client.send_message(message=message) print(response.choices[0].text.strip()) ``` 此段代码创建了一个 `Client` 类实例,并发送一条消息给服务器端处理,最后打印返回的结果字符串。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值