scikit-learn 安装和配置指南
项目地址:https://gitcode.com/gh_mirrors/sc/scikit-learn
1. 项目基础介绍和主要编程语言
项目介绍
scikit-learn 是一个用于机器学习的 Python 模块,它建立在 SciPy 之上,并遵循 3-Clause BSD 许可证。该项目始于 2007 年,由 David Cournapeau 作为 Google Summer of Code 项目启动,自那时起,许多志愿者为其贡献了代码。scikit-learn 目前由一个志愿者团队维护,旨在为所有人提供简单高效的工具来进行预测数据分析。
主要编程语言
scikit-learn 主要使用 Python 编程语言。
2. 项目使用的关键技术和框架
关键技术和框架
- Python: 主要编程语言。
- NumPy: 用于科学计算的基础库。
- SciPy: 用于科学和工程计算的库。
- joblib: 用于高效计算的库。
- threadpoolctl: 用于控制线程池的库。
- Matplotlib: 用于绘图的库(可选,用于绘图功能)。
- scikit-image: 用于图像处理的库(可选,用于某些示例)。
- pandas: 用于数据处理的库(可选,用于某些示例)。
- seaborn: 用于统计数据可视化的库(可选,用于某些示例)。
- plotly: 用于交互式可视化的库(可选,用于某些示例)。
3. 项目安装和配置的准备工作和详细安装步骤
准备工作
在安装 scikit-learn 之前,请确保您的系统已经安装了以下依赖项:
- Python (>= 3.9)
- NumPy (>= 1.19.5)
- SciPy (>= 1.6.0)
- joblib (>= 1.2.0)
- threadpoolctl (>= 3.1.0)
安装步骤
使用 pip 安装
如果您已经安装了上述依赖项,可以使用 pip 来安装 scikit-learn:
pip install -U scikit-learn
使用 conda 安装
如果您使用的是 Anaconda 或 Miniconda,可以使用 conda 来安装 scikit-learn:
conda install -c conda-forge scikit-learn
验证安装
安装完成后,您可以通过以下命令验证 scikit-learn 是否安装成功:
import sklearn
print(sklearn.__version__)
如果成功输出 scikit-learn 的版本号,说明安装成功。
可选依赖项安装
如果您需要使用 scikit-learn 的绘图功能或运行某些示例,您可能需要安装以下可选依赖项:
pip install matplotlib scikit-image pandas seaborn plotly
安装源码
如果您想从源码安装 scikit-learn,可以使用以下命令克隆仓库并进行安装:
git clone https://github.com/scikit-learn/scikit-learn.git
cd scikit-learn
pip install .
测试安装
安装完成后,您可以运行测试套件来验证安装是否正确。您需要安装 pytest (>= 7.1.2):
pip install pytest
pytest sklearn
通过以上步骤,您应该能够成功安装和配置 scikit-learn,并开始使用它进行机器学习任务。