Yolov8.Net 安装和配置指南

Yolov8.Net 安装和配置指南

Yolov8.Net A .net 6 implementation to use Yolov5 and Yolov8 models via the ONNX Runtime Yolov8.Net 项目地址: https://gitcode.com/gh_mirrors/yo/Yolov8.Net

1. 项目基础介绍和主要编程语言

项目介绍

Yolov8.Net 是一个基于 .NET 6 的开源项目,旨在通过 ONNX Runtime 使用 Yolov5 和 Yolov8 模型进行对象检测。该项目提供了一个简洁的接口,使得开发者可以在 .NET 环境中轻松加载和使用这些先进的深度学习模型。

主要编程语言

该项目主要使用 C# 编程语言进行开发。

2. 项目使用的关键技术和框架

关键技术

  • ONNX Runtime: 用于在 .NET 环境中运行 ONNX 格式的模型。
  • Yolov5 和 Yolov8: 先进的对象检测模型,由 Ultralytics 开发。

框架

  • .NET 6: 项目的基础框架,支持跨平台开发。
  • CUDA 和 cuDNN: 如果需要使用 GPU 加速,必须安装 CUDA 驱动和 cuDNN。

3. 项目安装和配置的准备工作和详细安装步骤

准备工作

  1. 安装 .NET 6 SDK:

    • 访问 .NET 官方网站 下载并安装 .NET 6 SDK。
    • 安装完成后,在命令行中运行 dotnet --version 确认安装成功。
  2. 安装 CUDA 和 cuDNN (可选,仅在使用 GPU 时需要):

  3. 克隆项目仓库:

    • 打开命令行工具,运行以下命令克隆项目仓库:
      git clone https://github.com/sstainba/Yolov8.Net.git
      

详细安装步骤

  1. 进入项目目录:

    cd Yolov8.Net
    
  2. 还原项目依赖:

    dotnet restore
    
  3. 构建项目:

    dotnet build
    
  4. 运行项目:

    dotnet run
    

配置和使用

  1. 加载模型:

    • 项目中提供了示例代码来加载 Yolov8 模型。你可以在 src/Yolov8net/Program.cs 文件中找到相关代码。
    • 示例代码如下:
      using var yolo = YoloV8Predictor.Create("/path/to/your/model.onnx");
      using var image = Image.FromFile("/path/to/your/image.jpg");
      var predictions = yolo.Predict(image);
      
  2. 处理预测结果:

    • 预测结果包含检测到的对象及其边界框。你可以根据需要进一步处理这些结果。

注意事项

  • 首次加载模型时可能会比较慢,因为模型需要被加载到内存中。后续的预测会显著加快。
  • 如果使用 GPU,确保 CUDA 和 cuDNN 已正确安装并配置。

通过以上步骤,你应该能够成功安装和配置 Yolov8.Net 项目,并在 .NET 环境中使用 Yolov5 和 Yolov8 模型进行对象检测。

Yolov8.Net A .net 6 implementation to use Yolov5 and Yolov8 models via the ONNX Runtime Yolov8.Net 项目地址: https://gitcode.com/gh_mirrors/yo/Yolov8.Net

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆炯骊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值