为什么正好经过这个空隙?

前言
偶然看到的一个问题,如图1,为什么正好经过这个空隙?我们用空间解析几何来解一下吧。

图1 为什么会经过这个空隙?

解答

如图2,建立空间直角坐标系 x y z xyz xyz,原点记为 O O O P P P 点为水平杆与斜杆的交点, Q Q Q 点为垂直杆与水平杆的交点, 将斜杆标记为 L L L

图2 建立空间直角坐标系

O Q = q OQ=q OQ=q Q P = r QP=r QP=r Q Q Q 点坐标为 ( 0 , 0 , q ) (0, 0, q) (0,0,q)

设水平杆 Q P QP QP z z z 轴以 ω   r a d / s \omega\, rad/s ωrad/s 的角速度旋转,并设从开始旋转到现在的时长为 t t t 秒, 则 P P P 点坐标为 ( r cos ⁡ ω t , r sin ⁡ ω t , q ) (r\cos{\omega t}, r\sin{\omega t}, q) (rcosωt,rsinωt,q)

Q Q Q P P P 两点坐标得:

O Q → = ( 0 , 0 , q ) Q P → = ( r cos ⁡ ω t , r sin ⁡ ω t , 0 ) (1) \overrightarrow{OQ}=(0, 0, q) \qquad \overrightarrow{QP}=(r\cos{\omega t}, r\sin{\omega t}, 0) \tag{1} OQ =(0,0,q)QP =(rcosωt,rsinωt,0)(1)

L L L 的方向向量 S → = ( a , b , c ) \overrightarrow{S}=(a, b, c) S =(a,b,c),由 L L L 的方向向量 S → \overrightarrow{S} S P P P 点得,得斜杆 L L L 代表的直线方程:
x − r cos ⁡ ω t a = y − r sin ⁡ ω t b = z − q c (2) \frac{x-r\cos{\omega t}}{a}=\frac{y-r\sin{\omega t}}{b}=\frac{z-q}{c} \tag{2} axrcosωt=byrsinωt=czq(2)

我们知道 Q P → \overrightarrow{QP} QP 与斜杆 L L L 垂直,假设 O Q → \overrightarrow{OQ} OQ 与斜杆 L L L 成固定角 θ \theta θ ,得:
{ 0 = Q P → ⋅ S → cos ⁡ θ = O Q → ⋅ S → ∣ O Q → ∣ ∣ S → ∣ (3) \begin{cases} 0=\overrightarrow{QP} \cdot \overrightarrow{S} \\ \cos{\theta}=\frac{\overrightarrow{OQ} \cdot \overrightarrow{S}}{\left|\overrightarrow{OQ}\right| \left| \overrightarrow{S}\right|} \end{cases} \tag{3} 0=QP S cosθ=OQ S OQ S (3)

Q P → \overrightarrow{QP} QP S → \overrightarrow{S} S O Q → \overrightarrow{OQ} OQ 代入 式(3),得
{ a b = − sin ⁡ ω t cos ⁡ ω t c 2 ( tan ⁡ θ ) 2 = a 2 + b 2 (4) \begin{cases} \frac{a}{b}=\frac{-\sin{\omega t}}{\cos{\omega t}} \\ c^{2}(\tan{\theta})^{2}=a^{2}+b^{2} \end{cases} \tag{4} {ba=cosωtsinωtc2(tanθ)2=a2+b2(4)

式(4)中第2条等式两边除以 b 2 b^2 b2 ,再化简得:
c 2 b 2 = 1 ( tan ⁡ θ ) 2 ( cos ⁡ ω t ) 2 (5) \frac{c^{2}}{b^{2}}=\frac{1}{(\tan{\theta})^{2}(\cos{\omega t})^{2}} \tag{5} b2c2=(tanθ)2(cosωt)21(5)

求直线组 L L L x o z xoz xoz 平面相交的图形,即回答这个缝隙的形状为什么是图1 中这样的曲线。我们令 y = 0 y=0 y=0 ,代入直线公式(2) 得:
x − r cos ⁡ ω t a = − r sin ⁡ ω t b = z − q c (6) \frac{x-r\cos{\omega t}}{a}=\frac{-r\sin{\omega t}}{b} =\frac{z-q}{c} \tag{6} axrcosωt=brsinωt=czq(6)
由式(4)(5)(6)得到方程组(7)。
{ a b = − sin ⁡ ω t cos ⁡ ω t x − r cos ⁡ ω t a = − r sin ⁡ ω t b c 2 b 2 = 1 ( tan ⁡ θ ) 2 ( cos ⁡ ω t ) 2 − r sin ⁡ ω t b = z − q c (7) \begin{cases} \frac{a}{b}=\frac{-\sin{\omega t}}{\cos{\omega t}}\\ \frac{x-r\cos{\omega t}}{a}=\frac{-r\sin{\omega t}}{b} \\ \frac{c^2}{b^2}=\frac{1}{(\tan{\theta})^{2}(\cos{\omega t})^{2}}\\ \frac{-r\sin{\omega t}}{b} =\frac{z-q}{c} \end{cases} \tag{7} ba=cosωtsinωtaxrcosωt=brsinωtb2c2=(tanθ)2(cosωt)21brsinωt=czq(7)

由式(7)中上面两个等式,消去a,b得:
− sin ⁡ ω t cos ⁡ ω t = x − r cos ⁡ ω t − r sin ⁡ ω t = a b (8) \frac{-\sin{\omega t}}{\cos{\omega t}}=\frac{x-r\cos{\omega t}}{-r\sin{\omega t}}=\frac{a}{b} \tag{8} cosωtsinωt=rsinωtxrcosωt=ba(8)
x cos ⁡ ω t = r (9) x \cos{\omega t}=r \tag{9} xcosωt=r(9)

由式(7)中下面两个等式,消去b,c得:
1 ( tan ⁡ θ ) 2 ( cos ⁡ ω t ) 2 = ( z − q ) 2 ( − r sin ⁡ ω t ) 2 = c 2 b 2 (10) \frac{1}{(\tan{\theta})^2(\cos{\omega t})^2} = \frac{(z-q)^2}{(-r\sin{\omega t})^2} =\frac{c^2}{b^2} \tag{10} (tanθ)2(cosωt)21=(rsinωt)2(zq)2=b2c2(10)

( − r sin ⁡ ω t ) 2 ( tan ⁡ θ ) 2 ( cos ⁡ ω t ) 2 = ( z − q ) 2 (11) \frac{(-r\sin{\omega t})^2}{(\tan{\theta})^2(\cos{\omega t})^2} = {(z-q)}^2 \tag{11} (tanθ)2(cosωt)2(rsinωt)2=(zq)2(11)

由利用式(9),可消去式(11)中的 ( sin ⁡ ω t ) 2 (\sin{\omega t})^{2} (sinωt)2 ( cos ⁡ ω t ) 2 (\cos{\omega t})^{2} (cosωt)2 得:
x 2 − ( tan ⁡ θ ) 2 ( z − q ) 2 = r 2 (12) x^{2}-(\tan{\theta})^{2}(z-q)^{2}=r^{2} \tag{12} x2(tanθ)2(zq)2=r2(12)
易知,为双曲线方程,所以在 xoz 平面相交得图形为双曲线。


欢迎观众老爷们评论回复,一键三连。
更多有趣问题,欢迎关注投稿 知乎小成 - 数学漫游专栏
我们聚焦生活中的数与形的小小问题们。
转载请注明出处,谢谢!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值