MMPose、RTMPose三角板关键点检测

⏰今日课程:MMPose代码教学 (6月2日 周五)
【课程名称】MMPose代码教程
【课程链接】3个都是噢
安装MMDetection和MMPose:https://www.bilibili.com/video/BV1Pa4y1g7N7
MMDetection三角板目标检测:https://www.bilibili.com/video/BV1Lm4y1879K
MMPose、RTMPose三角板关键点检测:https://www.bilibili.com/video/BV12a4y1u7sd
【讲师介绍】张子豪 OpenMMLab算法工程师
【学习形式】录播+社群答疑

第一部分
在这里插入图片描述
安装的过程真的是一波三折。
安装步骤教程https://github.com/TommyZihao/MMPose_Tutorials/blob/main/2022/%E3%80%90A%E3%80%91%E5%AE%89%E8%A3%85%E9%85%8D%E7%BD%AEMMPose.ipynb
遇到github链接不上,需要修改hosts文件,试了两三个小时,时好时坏,后来用的镜像方法,在源地址前面加k,
将github源网址前面加k即可。 比如:github.com/spring-proj… 改为:kgithub.com/spring-proj…
然后可以查看代码,查看issue和评论,默认自动带上k,方便。
在这里插入图片描述
发现更好的安装文档,是这个https://kgithub.com/TommyZihao/MMPose_Tutorials/blob/main/2022/%E3%80%90A%E3%80%91%E5%AE%89%E8%A3%85%E9%85%8D%E7%BD%AEMMPose.ipynb

在这里插入图片描述
在这里插入图片描述
第一部分安装好以后
在这里插入图片描述
安装第二部分安装完成

在这里插入图片描述

在这里插入图片描述
下载三角板关键点检测数据集
由于视频用是Mac演示,直接用ipthon执行命令会报错,我才用的是直接下载图片
在这里插入图片描述

下载config配置文件到data路径
在这里插入图片描述
本地执行demo时,cuda内存爆了,后续在看看怎么解决,这里先留个疑问,后续再来补充

RTMPose 目标检测
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

### MMPose 关键点检测示例 为了展示如何使用 `mmpose` 进行关键点检测,下面提供了一个完整的 Python 脚本作为实例。此脚本展示了加载模型、预处理输入图像以及执行推理的过程。 #### 加载并初始化模型 ```python from mmpose.apis import init_pose_model, inference_top_down_pose_model import mmcv config_file = 'configs/body_2d_keypoint/topdown_heatmap/coco/hrnet_w48_coco_256x192.py' checkpoint_path = 'checkpoints/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth' model = init_pose_model(config_file, checkpoint_path, device='cuda:0') ``` 这段代码定义了要使用的配置文件路径和权重文件路径,并通过调用 `init_pose_model()` 函数来创建一个用于人体姿态估计的模型对象[^1]。 #### 预处理输入数据 假设有一个名为 `image.jpg` 的测试图片: ```python img_name = "test/image.jpg" image = mmcv.imread(img_name) # 假设我们已经知道了人的位置框 (bbox),这里简单设置为全图大小 person_results = [{'bbox': [0, 0, image.shape[1], image.shape[0]]}] ``` 上述代码读取了一张图片,并构建了一个简单的边界框列表表示人物的位置信息。实际应用中通常会先利用目标检测工具获取更精确的人物区域。 #### 执行推断过程 ```python pose_results, returned_outputs = inference_top_down_pose_model( model, image, person_results, bbox_thr=0.3, format='xywh', dataset='TopDownCocoDataset') print(pose_results) ``` 该部分实现了对给定的人体区域进行关键点预测的功能。函数返回的结果包含了每个人物的关键点坐标及其置信度分数。 #### 可视化结果 最后可以将检测到的关键点绘制回原图上以便观察效果: ```python vis_img = model.show_result(image, pose_results, show=False) mmcv.imwrite(vis_img, f"{img_name[:-4]}_result.png") ``` 以上就是基于 `mmpose` 库实现基本关键点检测的一个完整工作流。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值