拉格朗日乘子法、罚函数法、乘子罚函数法

    • 1. 拉格朗日乘子法

      1.1 无约束问题

      无约束问题,定义为 minf(x)minf(x), 对于凸函数而言,直接利用费马定理,[Math Processing Error]f′(x)=0,获得最优解;

      1.2 等式约束问题

      等式约束定义如下: 

      minf(x)s.t.g(x)=0minf(x)s.t.g(x)=0

      现在利用拉格朗日乘子法,合并式子: 
      L(x,a)=f(x)+ag(x)L(x,a)=f(x)+ag(x)

      x,ax,a分别求偏导: 
      [Math Processing Error]∇xL(x,a)=f′(x)+ag′(x)=0∇aL(x,a)=g(x)=0 
      发现第二个式子刚好是其约束条件;

      为什么? 
      现在,我们在平面内投影函数,画出f(x)f(x)的等高线,以及g(x)=0g(x)=0的边界线;如图示: 
      蓝色虚线代表了f(x,y)f(x,y)的等高线;红色代表g(x,y)=c=0g(x,y)=c=0
      这里写图片描述 
      回顾: 
      1. 方向导数是各个方向上的导数 
      2. 偏导数连续才有梯度存在 
      3. 梯度的方向是方向导数中取到最大值的方向,梯度的值是方向导数的最大值(垂直方向) 
      假设f(x)f(x)的最小值在圆心处,即梯度方向向外;g(x,y)g(x,y)的梯度方向向下; 
      那么满足条件的值一定是两个函数相切处;如果相交,那么一定还存在一个等高线与红线相切,而且更小;在切点处,两个函数的梯度共线,即[Math Processing Error]f′(x)=−ag′(x),a<0;做简单的变换后:[Math Processing Error]f′(x)+ag′(x)=0,这就是第一个等式啦,同时还需要满足第二个式子;

      1.3 不等式约束问题(KTT条件)

      不等式约束问题: 

      minf(x)s.t.g(x)=0h(x)<=0minf(x)s.t.g(x)=0h(x)<=0

      引入拉格朗日函数:(KTT 条件) 
      L(x,a,b)=f(x)+ag(x)+bh(x)s.t.g(x)=0bh(x)=0L(x,a,b)=f(x)+ag(x)+bh(x)s.t.g(x)=0bh(x)=0

      这样就将不等式约束变成了等式约束,偏导等于零即可求得最优参数; 
      minf(x)minxmaxa,bL(x,a,b)minf(x)等价于minxmaxa,bL(x,a,b)

      对偶变换后有:
      maxa,bminL(x,a,b)maxa,bminL(x,a,b)

      因为h(x)<0h(x)<0,所以只有当bh(x)=0bh(x)=0时,L(x,a,b)L(x,a,b)才能取得最大值;否则不满足条件;所以KTT条件是minf(x)minf(x)的必要条件;

      补充:SVM 满足KTT条件:在边界上的点,有h(x)=0h(x)=0;非边界处,令b=0;

      1.4 拉格朗日乘子法问题

      当 目标函数的Hess矩阵不正定时(特征值不全为正,或者行列式不为正,那么此时的偏导为0处,并不能确定是否是极值点),所以无法求解;

      例子: 
      求解

      {minf=2x2+y22xys.t.x+y=1{minf=2x2+y2−2xys.t.x+y=1

      我们定义 L(x,y,λ)=fλg(x)=2x2+y22xyλ(x+y1)L(x,y,λ)=f−λg(x)=2x2+y2−2xy−λ(x+y−1) 
      求偏导可得:
      {Lx=4x2yλ=0Ly=2y2xλ=0Lλ=xy1=0{∂L∂x=4x−2y−λ=0∂L∂y=2y−2x−λ=0∂L∂λ=x−y−1=0

      我们可以计算原目标函数的Hess矩阵: A=[2Lx22Lyx2Lxy2Ly2]=[4222]A=[∂2L∂x2∂2L∂x∂y∂2L∂y∂x∂2L∂y2]=[4−2−22]正定矩阵; 
      再看一个目标函数,方程稍作修改: 
      {minf=2x2+y2+3xys.t.x+y=1{minf=2x2+y2+3xys.t.x+y=1

      直接求偏导,发现方程无解; 
      再看其Hess矩阵: B=[4332]B=[4332]非正定矩阵; 
      也就是说,在梯度为零处,我们无法判断是否是极值;


      2. 罚函数法

      2.1 定义

      罚函数法:根据约束条件的特点,构造出惩罚函数,然后加入到目标函数中,将其转化为无约束问题;新目标函数的解与原始目标函数解一致;

      2.1.1 等式约束的罚函数法:

      {minf(x)s.t.gi(x)=0{minf(x)s.t.gi(x)=0

      我们引入一个增广目标函数: 
      minF(x,σ)=f(x)+σP(x)P(x)=gTgminF(x,σ)=f(x)+σP(x)P(x)=gTg

      这里:σσ是惩罚因子,取很大的正数,F(x,σ)F(x,σ)是罚函数,σP(x)σP(x)是惩罚项; 
      惩罚项的性质: 
      1. 当xx为可行解时,P(x)=0P(x)=0,惩罚项为0; 
      2.当xx不在可行域内,此时σP(x)σP(x)会很大,那么求得minF(x,σ)minF(x,σ)必然有minf(x)minf(x)minx,σ[σP(x)]minx,σ[σP(x)]同时成立;所以,当σσ充分大时,增广目标函数的最优值接近于原始问题的最优值;(σσ→∞,若原问题有解(F<F<∞),则会有g=0g=0

      例如: 

      minf(x)=(x1+x2)2s.t.g(x)=x1+x2=cminf(x)=(x1+x2)2s.t.g(x)=x1+x2=c

      构造罚函数为:
      minL(x,σ)=minf(x)+σ||g(x)||22minL(x,σ)=minf(x)+σ||g(x)||22

      σσ设置的值较大;第一部分优化解,第二部分使得解在可行域内; 
      如果x不在可行域内,需要我们大步迭代;

      2.1.2 不等式约束的罚函数法:

      {minf(x)s.t.hi(x)>=0{minf(x)s.t.hi(x)>=0

      此时我们构造惩罚项; 
      (1)P(x)=[min(0,hi(x))]2P(x)=∑[min(0,hi(x))]2,可以简单分析出:当hi(x)>=0hi(x)>=0P(x)=0P(x)=0,满足条件;当不在可行域内时,我们需要加大惩罚; 
      (2)P(x)=αih2iP(x)=∑αihi2,其中αi={0,hi>=01,hi<0αi={0,hi>=01,hi<0

      2.1.3 一般形式的罚函数法: 

      {minf(x)s.t.gi(x)=0hi(x)>=0{minf(x)s.t.gi(x)=0hi(x)>=0

      那么罚函数为:
      P(x)=[gi(x)]2+[min(0,hi(x))]2P(x)=∑[gi(x)]2+∑[min(0,hi(x))]2

      特别注意:惩罚因子是充分大的数,拉格朗日乘子是一个确定的参数,意义不一样;(当惩罚因子过大时,在求解极小值的过程中,Hess矩阵变成病态矩阵?)

      2.2 外罚函数法

      对不在可行域内,加大惩罚;上文介绍的就是外罚函数法; 
      这里写图片描述

      2.3 内罚函数法

      又称障碍函数法,内点法);在可行域内筑起高墙,迫使值在可行域内,目标函数无法穿越;(只适用于不等式约束) 
      障碍函数一般取:(1)倒数 (2)对数 
      障碍因子为很小的正数 
      xx趋于边界时,那么障碍函数趋于无穷;初始点在可行域内部; 
      在可行域内时,障碍函数值很小,增广目标函数与原始目标函数等价了;

      这里写图片描述


      3. 广义乘子法

      3.1 等式约束广义乘子法:

      {minf(x)s.t.gi(x)=0{minf(x)s.t.gi(x)=0

      广义乘子法是拉格朗日乘子法与罚函数法的结合; 
      ϕ(x,λ,σ)=f(x)+λTg(x)+12σgT(x)g(x)ϕ(x,λ,σ)=f(x)+λTg(x)+12σgT(x)g(x)

      在罚函数的基础上增加了乘子项,首先在σσ足够大的基础上,获得ϕϕ的极小值,然后在调整λλ获得原问题的最优解; 
      迭代公式如下: 
      梯度等于零:xϕ(xk,λk,σk)=0∇xϕ(xk,λk,σk)=0,即
      xf(xk)+λkxgT(xk)+σkxgT(xk)g(xk)=xf(xk)+xgT(xk)(σkg(xk)+λk)=0∇xf(xk)+λk∇xgT(xk)+σk∇xgT(xk)g(xk)=∇xf(xk)+∇xgT(xk)(σkg(xk)+λk)=0

      λk+1=σkg(xk)+λkλk+1=σkg(xk)+λk,则导出拉格朗日乘子法的一阶必要条件; 
      xf(xk)+λk+1g=0∇xf(xk)+λk+1∇g=0

      计算方法: 
      (1)初始值设置:x,λ,σx,λ,σ 
      (2)计算梯度为0,获得当前最优值xkxk,然后判断是否终止; 
      (3)是否调整惩罚因子,获得σk+1σk+1 
      (4)计算λk+1=σkg(xk)+λkλk+1=σkg(xk)+λk

      3.2 不等式约束广义乘子法:

      思想是:引入松弛变量,化不等式问题为等式约束; 

      {minf(x)s.t.hi(x)>=0{minf(x)s.t.hi(x)=βi{minf(x)s.t.hi(x)>=0→{minf(x)s.t.hi(x)=βi

      那么原始问题转化成: 
      minx,λϕ(x,λ,σ)=f(x)+λT(h(x)β)+12σ(h(x)β)T(h(x)β)minx,λ,σ,βϕ(x,λ,σ,β)=f(x)+σ2((h+λσβ)2(λσ)2)β=1σmax{0,σh+λ}minx,λϕ(x,λ,σ)=f(x)+λT(h(x)−β)+12σ(h(x)−β)T(h(x)−β)minx,λ,σ,βϕ(x,λ,σ,β)=f(x)+σ2((h+λσ−β)2−(λσ)2)β=1σmax{0,σh+λ}

      首先计算关于ββ的极小值;因为β>=0β>=0,上式是关于ββ的二次函数,开口向上,对称轴是h+λσh+λσ
      β={0h+λσh+λσ<0h+λσ>=01σmax{0,σh+λ}β={0h+λσ<0h+λσh+λσ>=0→1σmax{0,σh+λ}

      这样做的目的是:保证增广目标函数最优解近似于原始问题最优解; 
      分析:当σh+λ>=0σh+λ>=0时,β=h+λσβ=h+λσ,则
      ϕ(x,λ,σ)=f(x)σ2(λσ)2=f(x)λ22σxϕ(x,λ,σ)=xf(x)ϕ(x,λ,σ)=f(x)−σ2(λσ)2=f(x)−λ22σ∇xϕ(x,λ,σ)=∇xf(x)

      σh+λ<0σh+λ<0时,β=0β=0,则
      ϕ(x,λ,σ)=f(x)σ2(λσ)2+(σh+λ)22σ=f(x)λ22σ+(σh+λ)22σxϕ(x,λ,σ)=xf(x)+(σh+λ)h(x)ϕ(x,λ,σ)=f(x)−σ2(λσ)2+(σh+λ)22σ=f(x)−λ22σ+(σh+λ)22σ∇xϕ(x,λ,σ)=∇xf(x)+(σh+λ)∇h(x)

      梯度为零计算最优解,发现刚好满足朗格朗日乘子法的必要条件;

      3.3 一般约束广义乘子法:

      混合等式不等式约束法,计算即可。


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值