我们都知道奈奎斯特速率是指对于低通信道,若带宽为W,无码间串扰的最大传码率为是2W(波特每秒)。这里的所有值都是指理想情况下。即低通信道为矩形低通信道。
若要理解这个定律。必须完全的理解sinc函数及其福利叶变换的本质。因为傅里叶变换具有对称性,这里不再枚举其具体过程和公式。只要记住两点:
1,时域变频域,f=0的值就是时域的积分值。sin(x)/x在整个轴上的积分为π。sin(πx)/πx在整个轴上的积分为1.
2,sinc函数的第一零点的值就是门函数的门宽的倒数。因为在ft中,无论是时域的平移还是频域的平移,只会有一个相位的影响,幅值是不会变的。所以,假设门宽为a,那么sinc函数的第一零点一定为1/a.
有了1,2两个知识点,在来理解次定律就一如反掌。在低通信道中,其频域为门函数,门宽为2w,所以,其ft对应的sinc的第一零点为1/2w(s).若采用这个脉冲函数作为波形传输信号,那么,若要没有码间串扰,码与码的距离必须平移一个1/2w.这样传码率就是2w。
若是带通信道,带宽为w,那么门宽为w,所以无码间串扰的最大传码率就是w。
必须注意,这里是传码率,值得是symbol,不是bit级别的,一个symbol可能包含几个bit。若是多进制调制,传信率会是传码率log2(M)倍。