所谓的nyqusit bandwidth是指在理想无噪信道下,当发送的码元速率为1/T时,其最小带宽。这个和ofdm有点类似。
假如发射的基带信号为矩形信号,就是一个码元一直持续整个码元。要么为1,要么为-1,。这种基带信号,经过一个理想无噪信道之后,这个信道相当于一个低通滤波器,时域就是一个sa函数。这些sa函数就像ofdm符号一样。ofdm符号之间的符号间距为sa函数的第一零点。也就是门函数的门宽的倒数。接收信号就是这些sa函数的时延叠加。就像ofdm符号一样。这样的话,每个sa函数之间的间距就是T,导致其对应的门宽就是1/T。,接收单一个码元的固定点出进行抽样。为了防止码间干扰,就必须使接收的各个符号之间满足一定的间距,最小值就是T。这样,会产生最小的nyquist bandwidth,就是1/T.如果只去实频,那么就是1/2T。这就是原理。
这就是一个最理想,最简单的通信模型。
当然,信道可以再频域上无限展宽,在时域上为一个delta脉冲。这个是最简单的模型。但是,信道的频谱资源是十分宝贵的,我们总是想用最少的频谱资源,也就是说,最少的信道带宽来达到同样的目的。我们的目的就是正确的发送那种矩形信号。这种低通滤波器的模型的最小带宽就是nyquist 带宽。相当于压缩信道的一个极限。在小于这个带宽。肯定就不行了。所以说,nyquist带宽是一个限。就是已知发送符号的速率,信道带宽能够压缩的最低值。和信道容量有点类似。