终于彻底理解了Nyquist bandwidth的本质

     所谓的nyqusit bandwidth是指在理想无噪信道下,当发送的码元速率为1/T时,其最小带宽。这个和ofdm有点类似。

     假如发射的基带信号为矩形信号,就是一个码元一直持续整个码元。要么为1,要么为-1,。这种基带信号,经过一个理想无噪信道之后,这个信道相当于一个低通滤波器,时域就是一个sa函数。这些sa函数就像ofdm符号一样。ofdm符号之间的符号间距为sa函数的第一零点。也就是门函数的门宽的倒数。接收信号就是这些sa函数的时延叠加。就像ofdm符号一样。这样的话,每个sa函数之间的间距就是T,导致其对应的门宽就是1/T。,接收单一个码元的固定点出进行抽样。为了防止码间干扰,就必须使接收的各个符号之间满足一定的间距,最小值就是T。这样,会产生最小的nyquist bandwidth,就是1/T.如果只去实频,那么就是1/2T。这就是原理。

     这就是一个最理想,最简单的通信模型。

    当然,信道可以再频域上无限展宽,在时域上为一个delta脉冲。这个是最简单的模型。但是,信道的频谱资源是十分宝贵的,我们总是想用最少的频谱资源,也就是说,最少的信道带宽来达到同样的目的。我们的目的就是正确的发送那种矩形信号。这种低通滤波器的模型的最小带宽就是nyquist 带宽。相当于压缩信道的一个极限。在小于这个带宽。肯定就不行了。所以说,nyquist带宽是一个限。就是已知发送符号的速率,信道带宽能够压缩的最低值。和信道容量有点类似。

### Nyquist 定理在信号处理和采样理论中的重要性 Nyquist定理指出,在理想情况下,为了不失真地重构原始连续时间信号,离散时间系统的采样率必须至少两倍于被采样的最高频率分量。这一原则被称为奈奎斯特速率[^1]。 当涉及到实际物理源的时间不相干特性时,如果采样间隔过大,则可能导致无法准确捕捉快速变化的信息,从而造成数据失真或者丢失重要的动态特征[^2]。 在一个通信信道中传输模拟信号之前先将其转换成数字形式的过程中,遵循Nyquist准则可以确保所得到的数字化版本能够精确表示原信号而不会引入过多噪声或其他干扰因素[^3]。 考虑频域滤波器的设计与实现方面的影响,低于Nyquist标准的欠采样可能会导致不同周期间的混叠现象发生;即高频成分错误映射至低频区域,破坏了原有结构并使得后续恢复变得困难甚至不可能完成[^4]。 因此,在诸如医学影像、遥感探测以及音频工程等领域里广泛应用的各种技术手段都严格遵守着该定律的要求来进行操作规划——比如通过调整相机快门速度来适应运动物体拍摄需求或是利用高精度模数转换器件获取高质量声音素材等实例均体现了这一点[^5]。 ```python import numpy as np from scipy.signal import freqz def nyquist_demo(fs, fmax): """ 展示给定的最大频率fmax下的最小必要采样频率fs 参数: fs (float): 采样频率(Hz) fmax (float): 输入信号的最大频率(Hz) 返回: bool: 如果满足Nyquist条件则返回True, 否则False. """ if fs >= 2 * fmax: print(f"采样频率 {fs}Hz 大于等于两倍最大频率 {fmax*2}Hz.") return True else: print(f"警告! 采样频率 {fs}Hz 小于两倍最大频率 {fmax*2}Hz!") return False nyquist_demo(8000, 3000) # 测试案例:电话语音质量通常不超过4kHz ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值