曲线刚好通过(-1,j0)点,表明闭环系统有极点位于虚轴上,系统处于临界稳定状态,归于不稳定。
假设特征值位于封闭的LHP中。这些假设,综合起来,保证了闭环系统的极点位于封闭的LHP中,并表明了一个稳定的系统。
- 绘制Nyquist图:首先,需要绘制出系统的Nyquist图。这通常涉及到将系统的传递函数转化为复数形式,并在复平面上绘制出频率响应的轨迹。
- 确定极点和零点:在Nyquist图中,需要确定系统的极点和零点的位置。这些点对于理解系统的行为至关重要,因为它们决定了Nyquist曲线的形状和特性。
- 观察Nyquist曲线的走向:接下来,观察Nyquist曲线在复平面上的走向。特别要注意曲线是否包围了特定的点,如(-1,j0)点。包围的次数和方式对于判断系统的稳定性至关重要。
- 应用Nyquist稳定判据:根据Nyquist稳定判据,通过计算Nyquist曲线包围(-1,j0)点的圈数N和开环传递函数的极点数P,来确定闭环系统的稳定性。具体的判据为Z=P-2N,如果Z为零,则闭环系统稳定;否则,闭环系统不稳定。
- 分析稳定裕度:除了判断稳定性,Nyquist图还可以用来分析系统的稳定裕度。通过观察Nyquist曲线与单位圆的相对位置,可以判断系统的相位裕量和幅值裕量,从而了解系统对扰动的抵抗能力。
增益(幅度)变化:
-
观察曲线半径:在Nyquist图上,任意一点到原点的距离代表了在对应频率下的增益(或幅度)。曲线上的点离原点越远,表示增益越大;离原点越近,表示增益越小。
-
起始与终止点:通常,Nyquist图起始于ω=0的极点,终止于ω→∞的情况。这些点代表了增益的极限情况,通过观察这些点,可以了解增益在低频和高频时的特性。
-
曲线走势:曲线的走势(上升、下降、平坦等)反映了增益随频率变化的趋势。例如,如果曲线随着频率的增加而远离原点,说明增益在增加;反之,如果曲线接近原点,说明增益在减小。
相位变化:
-
角度测量:在Nyquist图上,从正实轴逆时针到曲线上某点的角度代表了在对应频率下的相位。这个角度通常以度或弧度表示。
-
曲线方向:曲线的方向(顺时针或逆时针旋转)指示了相位随频率的变化趋势。例如,如果曲线随频率增加而顺时针旋转,那么相位在减小;如果逆时针旋转,相位在增加。
-
穿越情况:观察曲线是否穿越单位圆或其他关键线(如-180°线),这些穿越点通常表示相位发生了180°的变化或其他关键变化。
综合分析:
-
对比增益与相位:通常,Nyquist图会同时展示增益和相位的变化。因此,在分析时,需要综合考虑这两个因素,以全面了解系统的频率响应特性。
-
稳定性判断:Nyquist图还可以用于判断系统的稳定性。通过观察曲线是否包围了(-1, j0)点(即是否穿越单位圆的负实轴部分),可以确定系统是否稳定。