如何通俗的理解Nyquist稳定性判据

本文介绍了如何通过Nyquist图评估闭环系统的稳定性,涉及极点和零点定位、增益变化、相位分析以及稳定裕度计算,强调了穿越(-1,j0)点和单位圆在稳定性判断中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 曲线刚好通过(-1,j0)点,表明闭环系统有极点位于虚轴上,系统处于临界稳定状态,归于不稳定

假设特征值位于封闭的LHP中。这些假设,综合起来,保证了闭环系统的极点位于封闭的LHP中,并表明了一个稳定的系统。

  1. 绘制Nyquist图:首先,需要绘制出系统的Nyquist图。这通常涉及到将系统的传递函数转化为复数形式,并在复平面上绘制出频率响应的轨迹。
  2. 确定极点和零点:在Nyquist图中,需要确定系统的极点和零点的位置。这些点对于理解系统的行为至关重要,因为它们决定了Nyquist曲线的形状和特性。
  3. 观察Nyquist曲线的走向:接下来,观察Nyquist曲线在复平面上的走向。特别要注意曲线是否包围了特定的点,如(-1,j0)点。包围的次数和方式对于判断系统的稳定性至关重要。
  4. 应用Nyquist稳定判据:根据Nyquist稳定判据,通过计算Nyquist曲线包围(-1,j0)点的圈数N和开环传递函数的极点数P,来确定闭环系统的稳定性。具体的判据为Z=P-2N,如果Z为零,则闭环系统稳定;否则,闭环系统不稳定。
  5. 分析稳定裕度:除了判断稳定性,Nyquist图还可以用来分析系统的稳定裕度。通过观察Nyquist曲线与单位圆的相对位置,可以判断系统的相位裕量和幅值裕量,从而了解系统对扰动的抵抗能力。

增益(幅度)变化:

  1. 观察曲线半径:在Nyquist图上,任意一点到原点的距离代表了在对应频率下的增益(或幅度)。曲线上的点离原点越远,表示增益越大;离原点越近,表示增益越小。

  2. 起始与终止点:通常,Nyquist图起始于ω=0的极点,终止于ω→∞的情况。这些点代表了增益的极限情况,通过观察这些点,可以了解增益在低频和高频时的特性。

  3. 曲线走势:曲线的走势(上升、下降、平坦等)反映了增益随频率变化的趋势。例如,如果曲线随着频率的增加而远离原点,说明增益在增加;反之,如果曲线接近原点,说明增益在减小。

相位变化:

  1. 角度测量:在Nyquist图上,从正实轴逆时针到曲线上某点的角度代表了在对应频率下的相位。这个角度通常以度或弧度表示。

  2. 曲线方向:曲线的方向(顺时针或逆时针旋转)指示了相位随频率的变化趋势。例如,如果曲线随频率增加而顺时针旋转,那么相位在减小;如果逆时针旋转,相位在增加。

  3. 穿越情况:观察曲线是否穿越单位圆或其他关键线(如-180°线),这些穿越点通常表示相位发生了180°的变化或其他关键变化。

综合分析:

  1. 对比增益与相位:通常,Nyquist图会同时展示增益和相位的变化。因此,在分析时,需要综合考虑这两个因素,以全面了解系统的频率响应特性。

  2. 稳定性判断:Nyquist图还可以用于判断系统的稳定性。通过观察曲线是否包围了(-1, j0)点(即是否穿越单位圆的负实轴部分),可以确定系统是否稳定。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值