本篇围绕着如下几个问题展开,希望对推荐系统有个简单的认识:
1.什么是推荐系统?
2.为什么要推荐系统?
3.推荐系统的主要分类
4.推荐系统的体系结构
5.推荐系统的应用
6.知名研究团队
1.什么是推荐系统?
推荐系统是利用 电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。我们现在的都是个性化推荐系统
来源:百度百科
推荐系统的本质:在用户需求不明确的情况下,从海量信息中为用户寻找其感兴趣的信息的技术手段。
2.为什么需要推荐系统
对于这个问题的回答,转向另一个问题:谁需要推荐系统?答案是三者
用户:电子商务规模不断增大,产品的种类不断增加。顾客需要花费大量时间精力才能找到自己想要的产品。过程中会浏览大量的无关内容,出现信息过载情况
信息过载:信息量大幅增长,使用户面对大量信息时无法从中获得对自己真正有用的那部分信息,对信息的使用效率反而降低。推荐系统是解决信息过载的一个办法。
平台:平台通过推荐系统,为用户不断提供好的推荐。用户会开心,对平台的黏性会增加(生活里的体现就是我总喜欢用淘宝)
供货方:通过推荐系统,增加了交易的成交量。为供货方提供利润
注:搜索引擎和推荐系统的区别?
推荐系统会通过研究用户的兴趣偏好,进行个性化计算,由系统发现用户的兴趣点,引导用户发现自己的信息需求
3.推荐系统的主要分类
1)基于内容推荐:根据用户历史数据,使用机器学习方法提取特征,进行推荐
2)协同过滤推荐:根据计算与当前用户A接近的用户B,根据用户B的评价内容对A进行推荐。可
推荐系统详解:原理、应用与技术分类

本文深入探讨了推荐系统的基本概念,包括其定义、必要性,主要分类如基于内容、协同过滤等,体系结构的服务器端与客户端差异,以及推荐系统的广泛应用。了解推荐系统如何解决信息过载,以及国内外研究团队的重要角色。
最低0.47元/天 解锁文章
2033

被折叠的 条评论
为什么被折叠?



