Python实现线性回归与逻辑回归代码解析

1、编写一个Python脚本,对给定的一组(x,y)输入 - 输出样本进行线性回归,其中x是d维输入,y是实值输出。注意,线性回归问题有直接的闭式解,也可以使用梯度下降法求解。请实现这两种方法。

以下是一个使用Python实现线性回归的脚本,包含闭式解和梯度下降法两种方法:

import numpy as np

# 闭式解实现线性回归
class ClosedFormLinearRegression:
    def __init__(self):
        self.weights = None

    def fit(self, X, y):
        # 添加偏置项
        X = np.c_[np.ones((X.shape[0], 1)), X]
        # 计算权重
        self.weights = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)

    def predict(self, X):
        # 添加偏置项
        X = np.c_[np.ones((X.shape[0], 1)), X]
        return X.dot(self.weights)

# 梯度下降法实现线性回归
class GradientDescentLinearRegression:
    def __init__(self, learning_rate=0.01, num_iterations=1000):
        self.learning_rate = learning_rate
        self.num_iterations = num_iterations
        self.weights = None

    def fit(self, X, y):
        # 添加偏置项
        X = np.c_[np.ones((X.shape[0], 1)), X]
        num_samples, num_features = X.shape
        self.weights = np.zeros(num_features)
        for _ in range(self.num_iterations):
            y_pred = np.dot(X, self.weights)
            dw = (1 / num_samples) * np.dot(X.T, (y_pred - y))
            self.weights -= self.learning_rate * dw

    def predict(self, X):
        # 添加偏置项
        X = np.c_[np.ones((X.shape[0], 1)), X]
        return np.dot(X, self.weights)

# 示例使用
if __name__ == "__main__":
    # 生成一些示例数据
    X = np.array([[1], [2], [3], [4], [5]])
    y = np.array([2, 4, 6, 8, 10])
    # 闭式解方法
    closed_form_model = ClosedFormLinearRegression()
    closed_form_model.fit(X, y)
    y_pred_closed_form = closed_form_model.predict(X)
    print("闭式解预测结果:", y_pred_closed_form)
    # 梯度下降法
    gradient_descent_model = GradientDescentLinearRegression()
    gradient_descent_model.fit(X, y)
    y_pred_gradient_descent = gradient_descent_model.predict(X)
    print("梯度下降法预测结果:", y_pred_gradient_descent)

这个脚本定义了两个类, ClosedFormLinearRegression 用于闭式解方法, Gradi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值