“交叉熵”反向传播推导

交叉熵(CrossEntropy)是常见的损失函数,本文详细推导一下它的梯度,面试大厂或者工程实践中都可能会用到。

前向传播

假设分类任务类别数是

V,隐层输出是
V维向量
\mathbf{h},标准的one-hot向量是
\mathbf{y},正确的类别是
k。那么交叉熵损失可以定义为:

\mathcal{L}(\mathbf p, \mathbf q) = -\sum_i \mathbf{p}_i \log(\mathbf{q}_i) \\

其中

\mathbf p = (1 - \alpha)  \mathbf y + \frac{\alpha}{V}\cdot \mathbf 1
\mathbf q = \mathrm{Softmax}(\mathbf h)
0\le \alpha\le 1是平滑参数。Softmax函数大家都很熟悉了,具体形式为:
\mathbf{q}_i = \frac{e^{\mathbf{h}_i}}{\sum_{j}{e^{\mathbf{h}_j}}}

反向传播

\mathcal{L}
\mathbf{h}_i的梯度要分两种情况:

\frac{\partial{\mathcal{L}}}{\partial{\mathbf{h}_i}} = \left\{ \begin{array}{ll}    \mathbf{q}_i -\frac{\alpha}{V}  - 1 + \alpha & i = k \\\    \mathbf{q}_i -\frac{\alpha}{V} & i\neq k \end{array}  \right. \\

推导过程

根据求导法则有:

\frac{\partial \mathcal{L}}{\partial \mathbf{h}_i} = -\sum_{j}{\frac{\partial{\mathcal{L}}}{\partial{\mathbf{q}_j}} \cdot \frac{\partial{\mathbf{q}_j}}{\partial{\mathbf{h}_i}}} = -\sum_{j}{\frac{\mathbf{p}_j}{\mathbf{q}_j} \cdot \frac{\partial{\mathbf{q}_j}}{\partial{\mathbf{h}_i}}} \\

其中

\frac{\partial{\mathbf{q}_j}}{\partial{\mathbf{h}_i}}就是Softmax函数的梯度(这个推导比较简单,放在了文末):

\frac{\partial{\mathbf{q}_j}}{\partial{\mathbf{h}_i}} = \left\{ \begin{array}{ll}    \mathbf{q}_i (1 - \mathbf{q}_i)  & j = i \\\     -\mathbf{q}_i \mathbf{q}_j & j\neq i \end{array}  \right. \\

下面分两种情况讨论:

  1. i = k时:

\begin{aligned} \frac{\partial \mathcal{L}}{\partial \mathbf{h}_i} &= -\sum_{j}{\frac{\partial{\mathcal{L}}}{\partial{\mathbf{q}_j}} \cdot \frac{\partial{\mathbf{q}_j}}{\partial{\mathbf{h}_i}}} = -\sum_{j}{\frac{\mathbf{p}_j}{\mathbf{q}_j} \cdot \frac{\partial{\mathbf{q}_j}}{\partial{\mathbf{h}_i}}} \\\ &= -\frac{\mathbf{p}_k}{\mathbf{q}_k} \cdot \frac{\partial{\mathbf{q}_k}}{\partial{\mathbf{h}_i}} -\sum_{j \neq k}{\frac{\mathbf{p}_j}{\mathbf{q}_j} \cdot \frac{\partial{\mathbf{q}_j}}{\partial{\mathbf{h}_i}}} \\\ &= -\frac{\mathbf{p}_k}{\mathbf{q}_k} \cdot \mathbf{q}_k (1 - \mathbf{q}_k) -\sum_{j \neq k}{\frac{\mathbf{p}_j}{\mathbf{q}_j} \cdot (-\mathbf{q}_i \mathbf{q}_j)} \\\ &= \mathbf{p}_k (\mathbf{q}_k - 1)  + \mathbf{q}_i\sum_{j \neq k}{\mathbf{p}_j} \\\ &= (1 - \alpha + \frac{\alpha}{V})(\mathbf{q}_k - 1) +  (V - 1) \cdot \frac{\alpha}{V}\cdot \mathbf{q}_i \\\ &= \mathbf{q}_i -\frac{\alpha}{V}  - 1 + \alpha \end{aligned} \\

2. 当

i \neq k时:

\begin{aligned} \frac{\partial \mathcal{L}}{\partial \mathbf{h}_i} &= -\sum_{j}{\frac{\partial{\mathcal{L}}}{\partial{\mathbf{q}_j}} \cdot \frac{\partial{\mathbf{q}_j}}{\partial{\mathbf{h}_i}}} = -\sum_{j}{\frac{\mathbf{p}_j}{\mathbf{q}_j} \cdot \frac{\partial{\mathbf{q}_j}}{\partial{\mathbf{h}_i}}} \\\ &= -\frac{\mathbf{p}_k}{\mathbf{q}_k} \cdot \frac{\partial{\mathbf{q}_k}}{\partial{\mathbf{h}_i}} -\frac{\mathbf{p}_i}{\mathbf{q}_i} \cdot \frac{\partial{\mathbf{q}_i}}{\partial{\mathbf{h}_i}} -\sum_{j \neq k, j \neq i}{\frac{\mathbf{p}_j}{\mathbf{q}_j} \cdot \frac{\partial{\mathbf{q}_j}}{\partial{\mathbf{h}_i}}} \\\ &= -\frac{\mathbf{p}_k}{\mathbf{q}_k} \cdot (-\mathbf{q}_k\mathbf{q}_i) -\frac{\mathbf{p}_i}{\mathbf{q}_i} \cdot \mathbf{q}_i (1 - \mathbf{q}_i) -\sum_{j \neq k, j \neq i}{\frac{\mathbf{p}_j}{\mathbf{q}_j} \cdot (-\mathbf{q}_i \mathbf{q}_j)} \\\ &= \mathbf{p}_k \mathbf{q}_i - \mathbf{p}_i (1 - \mathbf{q}_i) + \mathbf{q}_i\sum_{j \neq k, j \neq i}{\mathbf{p}_j} \\\ &= (1 - \alpha + \frac{\alpha}{V})\cdot\mathbf{q}_i - \frac{\alpha}{V} \cdot (1 - \mathbf{q}_i) + (V - 2) \cdot \frac{\alpha}{V}\cdot\mathbf{q}_i \\\ &= \mathbf{q}_i -\frac{\alpha}{V} \end{aligned} \\

Softmax梯度

回顾Softmax函数的形式:

\mathbf{q}_j = \frac{e^{\mathbf{h}_j}}{\sum_{l}{e^{\mathbf{h}_l}}} = \frac{e^{\mathbf{h}_j}}{e^{\mathbf{h}_i} + \sum_{l \neq i}{e^{\mathbf{h}_l}}} \\

这里也分两种情况讨论:

  1. j = i时:

\begin{aligned} \frac{\partial{\mathbf{q}_j}}{\partial{\mathbf{h}_i}} &= \frac{e^{\mathbf{h}_j}}{e^{\mathbf{h}_i} + \sum_{l \neq i}{e^{\mathbf{h}_l}}} - \frac{e^{\mathbf{h}_j} \cdot e^{\mathbf{h}_j}}{\left(e^{\mathbf{h}_i} + \sum_{l \neq i}{e^{\mathbf{h}_l}}\right)^2} \\\ &= \mathbf{q}_j - \mathbf{q}_j\mathbf{q}_j \\\ &= \mathbf{q}_j (1 - \mathbf{q}_j) \end{aligned} \\

2. 当

j \neq i时:

\begin{aligned} \frac{\partial{\mathbf{q}_j}}{\partial{\mathbf{h}_i}} &= - \frac{e^{\mathbf{h}_j} \cdot e^{\mathbf{h}_i}}{\left(e^{\mathbf{h}_i} + \sum_{l \neq i}{e^{\mathbf{h}_l}}\right)^2} \\\ &= -\mathbf{q}_j\mathbf{q}_i \end{aligned} \\
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法码上来

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值