hdoj 1513 Palindrome

 类型:DP

 题目:http://acm.hdu.edu.cn/showproblem.php?pid=1513

 思路: 状态dp(i, j)表示从位置i到位置j最少需要插入的字符数

 情况1:str[i] == str[j] 则dp(i, j) = min(dp(i, j), dp(i + 1, j - 1))

 情况2:str[i] != str[j] 则dp(i, j) = min(dp(i, j), dp(i + 1, j))
                                         dp(i, j) = min(dp(i, j), dp(i, j - 1))  

 枚举长度,当要求长度为k的串的最优值时,长度为k - 1和k - 2的最优值已经求出

 可以利用他们的最优值推导出当前最优值

 利用3行滚动数组来降低空间消耗,观察方程,当前情况下只会利用k - 1和k - 2的值

 !!!k行计算完成时要清空k - 2行的数据,防止原来的值产生影响

#include <iostream>
#include <sstream>
#include <string>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#include <map>
#include <algorithm>
#include <numeric>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <set>
#include <deque>
#include <bitset>
#include <functional>
#include <utility>
#include <iomanip>
#include <cctype>
using namespace std;

#define FOR(i,a,b) for(i = (a); i < (b); ++i)
#define FORE(i,a,b) for(i = (a); i <= (b); ++i)
#define FORD(i,a,b) for(i = (a); i > (b); --i)
#define FORDE(i,a,b) for(i = (a); i >= (b); --i)
#define max(a,b) ((a) > (b)) ? (a) : (b)
#define min(a,b) ((a) < (b)) ? (a) : (b)
#define CLR(a,b) memset(a,b,sizeof(a))
#define PB(x) push_back(x)

typedef vector<int> VI;

const int MAXN = 5010;
const int MAXM = 0;
const int hash_size = 25000002;
const int INF = 0x7f7f7f7f;

int n;
int dp[3][MAXN];
char str[MAXN];

int main()
{
	int i, j, k;
	int i1;

	while(cin>>n) {
		scanf("%s", str + 1);
		FORE(i, 1, n)
			dp[0][i] = dp[1][i] = dp[2][i] = INF;
		FORE(i, 1, n)
			dp[1][i] = 0;
		FORE(i, 1, n - 1)
			if(str[i] != str[i + 1])
				dp[2][i]= 1;
			else
				dp[2][i] = 0;
		FORE(k, 3, n) {
			FORE(i, 1, n - k + 1) {
				j = i + k - 1;
				if(str[i] == str[j])
					dp[k % 3][i] = min(dp[k % 3][i], dp[(k - 2) % 3][i + 1]);
				dp[k % 3][i] = min(dp[k % 3][i], dp[(k - 1) % 3][i + 1] + 1);
				dp[k % 3][i] = min(dp[k % 3][i], dp[(k - 1) % 3][i] + 1);
			}
			FORE(i1, 1, n)
				dp[(k + 1) % 3][i1] = INF;
		}
		cout<<dp[n % 3][1]<<endl;
	}
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值