SVM通俗易懂的推导过程

SVM原理推导手写版
在这里插入图片描述在这里插入图片描述在这里插入图片描述

支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,常用于分类和回归问题。其原理相对来说较为复杂,但可以通过以下通俗易懂的方式进行解释: SVM的基本思想是找到一个最佳的超平面将不同类别的数据完全分开。换句话说,我们要找到一个决策边界,使得属于某一类的样本点都在一个侧面,而属于另一类的样本点则在另一侧面。 为了找到这个最佳的超平面,SVM引入了支持向量的概念。支持向量是离决策边界最近的那些样本点,它们对于决策边界的确定起到关键作用。这些支持向量点到决策边界的距离被称为间隔,我们的目标是找到最大化间隔的决策边界。 但是,在实际问题中,数据往往无法完全线性分开。为解决这个问题,SVM引入了核函数的概念。核函数将数据从原始空间映射到更高维的特征空间,在特征空间中,原本线性不可分的问题可能变得线性可分。 基于核函数的SVM即通过在特征空间中寻找最佳的超平面来解决非线性问题。通过设置不同的核函数,我们可以将数据映射到不同的特征空间,并得到不同的决策边界。 SVM的训练过程可以通过求解一个凸优化问题来实现。优化问题的目标是最大化间隔,同时要求决策边界的分类结果尽量准确。通过使用相关的数学方法,可以求解出最优的超平面以及对应的支持向量。 总之,SVM是一种通过找到最佳的超平面来实现分类的机器学习算法。它的原理简单概括为找到一条决策边界,使得离这条边界最近的样本点都被正确分类,并且间隔最大化。通过引入核函数,SVM也可以解决非线性分类问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值