1.源码
	def maxpool(input):
		if pool_type == 'max':
			return torch.max(input, 2)[0].contiguous()
2.测试输入
x2=torch.rand((2,2,2,3))
随机值为
tensor([[[[0.9475, 0.5645, 0.1647],
          [0.4556, 0.1263, 0.9549]],
         [[0.7462, 0.6263, 0.5288],
          [0.2702, 0.1502, 0.1599]]],
        [[[0.8772, 0.2693, 0.8170],
          [0.4525, 0.6906, 0.9137]],
         [[0.1647, 0.6652, 0.8407],
          [0.0336, 0.9208, 0.7451]]]])
3.torch.max()的原理解释
torch.max(input, dim, keepdim=False, out=None)
 按维度dim 返回最大值,并且返回索引。
参考:Pytorch笔记torch.max()
 对一个维度为 (2,3) 的二维数组,如 [[0.1,0.2,0.3],[0.4,0.5,0.6]] , torch.max(x,0) 表示返回每一列中最大值的那个元素; torch.max(x,1) 表示返回每一行中最大值的那个元素
torch.max(input, 2)[0] 表示返回 value;
 torch.max(input, 2)[1] 表示返回 indices;
 例子见:Python-torch.max()
torch.contiguous()方法首先拷贝了一份张量在内存中的地址,然后将地址按照形状改变后的张量的语义进行排列。
4.测试输出
y=maxpool(x2)
输出y
tensor([[[0.9475, 0.5645, 0.9549],
         [0.7462, 0.6263, 0.5288]],
        [[0.8772, 0.6906, 0.9137],
         [0.1647, 0.9208, 0.8407]]])
 
                   
                   
                   
                   本文介绍了PyTorch中的`maxpool`函数,用于实现最大池化操作。通过示例代码展示了如何使用`torch.max()`获取二维数组中每列的最大值,并利用`contiguous()`进行内存布局调整。测试输入和输出展示了`maxpool`函数在具体数据上的应用。
本文介绍了PyTorch中的`maxpool`函数,用于实现最大池化操作。通过示例代码展示了如何使用`torch.max()`获取二维数组中每列的最大值,并利用`contiguous()`进行内存布局调整。测试输入和输出展示了`maxpool`函数在具体数据上的应用。
           
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   621
					621
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            