pytorch 对 maxpooling实现的理解

本文介绍了PyTorch中的`maxpool`函数,用于实现最大池化操作。通过示例代码展示了如何使用`torch.max()`获取二维数组中每列的最大值,并利用`contiguous()`进行内存布局调整。测试输入和输出展示了`maxpool`函数在具体数据上的应用。
摘要由CSDN通过智能技术生成

1.源码

	def maxpool(input):
		if pool_type == 'max':
			return torch.max(input, 2)[0].contiguous()

2.测试输入

x2=torch.rand((2,2,2,3))

随机值为

tensor([[[[0.9475, 0.5645, 0.1647],
          [0.4556, 0.1263, 0.9549]],

         [[0.7462, 0.6263, 0.5288],
          [0.2702, 0.1502, 0.1599]]],


        [[[0.8772, 0.2693, 0.8170],
          [0.4525, 0.6906, 0.9137]],

         [[0.1647, 0.6652, 0.8407],
          [0.0336, 0.9208, 0.7451]]]])

3.torch.max()的原理解释

torch.max(input, dim, keepdim=False, out=None)
按维度dim 返回最大值,并且返回索引。

参考:Pytorch笔记torch.max()
对一个维度为 (2,3) 的二维数组,如 [[0.1,0.2,0.3],[0.4,0.5,0.6]] , torch.max(x,0) 表示返回每一列中最大值的那个元素; torch.max(x,1) 表示返回每一行中最大值的那个元素

torch.max(input, 2)[0] 表示返回 value;
torch.max(input, 2)[1] 表示返回 indices;
例子见:Python-torch.max()

torch.contiguous()方法首先拷贝了一份张量在内存中的地址,然后将地址按照形状改变后的张量的语义进行排列。

4.测试输出

y=maxpool(x2)

输出y

tensor([[[0.9475, 0.5645, 0.9549],
         [0.7462, 0.6263, 0.5288]],

        [[0.8772, 0.6906, 0.9137],
         [0.1647, 0.9208, 0.8407]]])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值