pytorch c++混编报错 Error checking compiler version for cl: [WinError 2] 系统找 不到指定的文件。

博客主要讲述了在尝试安装Python扩展模块时遇到的两个关键问题:1) 缺少ninja编译器导致编译速度下降;2) 找不到符合要求的cl.exe编译器版本。解决方案包括安装ninja包和确保安装的Visual Studio版本至少为2017,因为当前环境要求的最低版本为19.0.24215,而用户只有2015版。此外,还介绍了_MSC_VER宏在MSVC编译器版本识别中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.报错信息

(python37) H:\emd>python setup.py install
running install
running bdist_egg
running egg_info
creating emd.egg-info
writing emd.egg-info\PKG-INFO
writing dependency_links to emd.egg-info\dependency_links.txt
writing top-level names to emd.egg-info\top_level.txt
writing manifest file 'emd.egg-info\SOURCES.txt'
 D:\Anaconda_app\envs\python37\lib\site-packages\torch\utils\cpp_extension.py:370: UserWarning: Attempted to use ninja as the BuildExtension backend but we
could not find ninja.. Falling back to using the slow distutils backend. 
  warnings.warn(msg.format('we could not find ninja.'))
reading manifest file 'emd.egg-info\SOURCES.txt'
writing manifest file 'emd.egg-info\SOURCES.txt'
installing library code to build\bdist.win-amd64\egg
running install_lib
running build_ext
D:\Anaconda_app\envs\python37\lib\site-packages\torch\utils\cpp_extension.py:305: UserWarning: Error checking compiler version for cl: [WinError 2] 系统找
不到指定的文件。
  warnings.warn(f'Error checking compiler version for {compiler}: {error}')
building 'emd' extension
creating build
creating build\temp.win-amd64-3.7
……
D:\Anaconda_app\envs\python37\lib\site-packages\torch\include\c10/util/Optional.h(427): note: 参见对正在编译的类 模板 实例化“OptionalBase<at::Tensor>”的
引用
D:\Anaconda_app\envs\python37\lib\site-packages\torch\include\ATen/core/TensorBody.h(734): note: 参见对正在编译的类 模板 实例化“c10::optional<at::Tensor>
”的引用
D:\Anaconda_app\envs\python37\lib\site-packages\torch\include\c10/util/Optional.h(395): warning C4624: “c10::trivially_copyable_optimization_optional_base
<T>”: 已将析构函数隐式定义为“已删除”
        with
        [
            T=at::Tensor
        ]
D:\Anaconda_app\envs\python37\lib\site-packages\torch\include\c10/util/Optional.h(476): warning C4814: “c10::optional<at::Tensor>::contained_val”: 在 C++
14 中,"constexpr" 将不表示“常量”;请考虑显式指定“常量”
D:\Anaconda_app\envs\python37\lib\site-packages\torch\include\c10/util/Optional.h(477): error C2556: “at::Tensor &c10::optional<at::Tensor>::contained_val
(void) const &”: 重载函数与“const at::Tensor &c10::optional<at::Tensor>::contained_val(void) const &”只是在返回类型上不同
D:\Anaconda_app\envs\python37\lib\site-packages\torch\include\c10/util/Optional.h(471): note: 参见“c10::optional<at::Tensor>::contained_val”的声明
D:\Anaconda_app\envs\python37\lib\site-packages\torch\include\c10/util/Optional.h(477): error C2373: “c10::optional<at::Tensor>::contained_val”: 重定义;
不同的类型修饰符
D:\Anaconda_app\envs\python37\lib\site-packages\torch\include\c10/util/Optional.h(471): note: 参见“c10::optional<at::Tensor>::contained_val”的声明
D:\Anaconda_app\envs\python37\lib\site-packages\torch\include\c10/util/Optional.h(476): warning C4814: “c10::optional<int64_t>::contained_val”: 在 C++14
中,"constexpr" 将不表示“常量”;请考虑显式指定“常量”
D:\Anaconda_app\envs\python37\lib\site-packages\torch\include\ATen/core/TensorBody.h(774): note: 参见对正在编译的类 模板 实例化“c10::optional<int64_t>”的
引用
D:\Anaconda_app\envs\python37\lib\site-packages\torch\include\c10/util/Optional.h(477): error C2556: “int64_t &c10::optional<int64_t>::contained_val(void)
 const &”: 重载函数与“const int64_t &c10::optional<int64_t>::contained_val(void) const &”只是在返回类型上不同
D:\Anaconda_app\envs\python37\lib\site-packages\torch\include\c10/util/Optional.h(471): note: 参见“c10::optional<int64_t>::contained_val”的声明
D:\Anaconda_app\envs\python37\lib\site-packages\torch\include\c10/util/Optional.h(477): error C2373: “c10::optional<int64_t>::contained_val”: 重定义;不
同的类型修饰符
D:\Anaconda_app\envs\python37\lib\site-packages\torch\include\c10/util/Optional.h(471): note: 参见“c10::optional<int64_t>::contained_val”的声明
D:\Anaconda_app\envs\python37\lib\site-packages\torch\include\c10/util/Optional.h(477): fatal error C1003: 错误计数超过 100;正在停止编译
error: command 'D:\\Program Files (x86)\\Microsoft Visual Studio 14.0\\VC\\BIN\\x86_amd64\\cl.exe' failed with exit status 2


2.错误分析

分析:从以上报错信息里面,得到信息
D:\Anaconda_app\envs\python37\lib\site-packages\torch\utils\cpp_extension.py:370: UserWarning: Attempted to use ninja as the BuildExtension backend but we could not find ninja… Falling back to using the slow distutils backend.

D:\Anaconda_app\envs\python37\lib\site-packages\torch\utils\cpp_extension.py:305: UserWarning: Error checking compiler version for cl: [WinError 2] 系统找
不到指定的文件。warnings.warn(f’Error checking compiler version for {compiler}: {error}’)

1)需要用到ninja包来编译,但是我没有装ninja,所以需要先装ninja(pip install ninja)
2) 找不到符合要求版本的cl.exe,根据给出的D:\Anaconda_app\envs\python37\lib\site-packages\torch\utils\cpp_extension.py:305:
跳到源码

    try:
        if sys.platform.startswith('linux'):
            minimum_required_version = MINIMUM_GCC_VERSION
            versionstr = subprocess.check_output([compiler, '-dumpfullversion', '-dumpversion'])
            version = versionstr.decode().strip().split('.')
        else:
            minimum_required_version = MINIMUM_MSVC_VERSION
            compiler_info = subprocess.check_output(compiler, stderr=subprocess.STDOUT)
            match = re.search(r'(\d+)\.(\d+)\.(\d+)', compiler_info.decode().strip())
            version = (0, 0, 0) if match is None else match.groups()
    except Exception:
        _, error, _ = sys.exc_info()
        warnings.warn(f'Error checking compiler version for {compiler}: {error}')
        return False

我不是在linux平台,而是win平台,于是找到cl.exe的版本要求:

MINIMUM_MSVC_VERSION = (19, 0, 24215)

MSVC是一个编译器,其编译器名字叫"cl.exe",它是微软专为VS开发的一款编译器。

上面语句写了 MSVC 最低的版本要求MSVC 19.0.24215.

3.需要了解的知识

_MSC_VER 是MSVC编译器的内置宏,定义了编译器的版本。
MS Microsoft 的简写。
C MSC 就是 Microsoft 的 C 编译器。
VER Version 的简写。

因此_MSC_VER的意思就是:Microsoft 的 C 编译器的版本。

MSC    1.0   _MSC_VER == 100
MSC    2.0   _MSC_VER == 200
MSC    3.0   _MSC_VER == 300
MSC    4.0   _MSC_VER == 400
MSC    5.0   _MSC_VER == 500
MSC    6.0   _MSC_VER == 600
MSC    7.0   _MSC_VER == 700
MSVC++ 1.0   _MSC_VER == 800
MSVC++ 2.0   _MSC_VER == 900
MSVC++ 4.0   _MSC_VER == 1000 (Developer Studio 4.0)
MSVC++ 4.2   _MSC_VER == 1020 (Developer Studio 4.2)
MSVC++ 5.0   _MSC_VER == 1100 (Visual Studio 97 version 5.0)
MSVC++ 6.0   _MSC_VER == 1200 (Visual Studio 6.0 version 6.0)
MSVC++ 7.0   _MSC_VER == 1300 (Visual Studio .NET 2002 version 7.0)
MSVC++ 7.1   _MSC_VER == 1310 (Visual Studio .NET 2003 version 7.1)
MSVC++ 8.0   _MSC_VER == 1400 (Visual Studio 2005 version 8.0)
MSVC++ 9.0   _MSC_VER == 1500 (Visual Studio 2008 version 9.0)
MSVC++ 10.0  _MSC_VER == 1600 (Visual Studio 2010 version 10.0)
MSVC++ 11.0  _MSC_VER == 1700 (Visual Studio 2012 version 11.0)
MSVC++ 12.0  _MSC_VER == 1800 (Visual Studio 2013 version 12.0)
MSVC++ 14.0  _MSC_VER == 1900 (Visual Studio 2015 version 14.0)
MSVC++ 14.1  _MSC_VER == 1910 (Visual Studio 2017 version 15.0)
MSVC++ 14.11 _MSC_VER == 1911 (Visual Studio 2017 version 15.3)
MSVC++ 14.12 _MSC_VER == 1912 (Visual Studio 2017 version 15.5)
MSVC++ 14.13 _MSC_VER == 1913 (Visual Studio 2017 version 15.6)
MSVC++ 14.14 _MSC_VER == 1914 (Visual Studio 2017 version 15.7)
MSVC++ 14.15 _MSC_VER == 1915 (Visual Studio 2017 version 15.8)
MSVC++ 14.16 _MSC_VER == 1916 (Visual Studio 2017 version 15.9)
MSVC++ 14.2  _MSC_VER == 1920 (Visual Studio 2019 Version 16.0)
MSVC++ 14.21 _MSC_VER == 1921 (Visual Studio 2019 Version 16.1)
MSVC++ 14.22 _MSC_VER == 1922 (Visual Studio 2019 Version 16.2)

例如: MSVC++ 14.0 表示 Visual C++ 的版本为 14.0,后面括号中的 Visual Studio 2015,表明该 VC++ 包含在微软开发工具 Visual Studio 2015 中。

参考:MSVC编译器中的_MSC_VER如何使用?

4.回顾问题及解决

1)ninja已安装
2)对比第三部分中的表,我至少要安装VS2017,但是电脑中VS版本是2015,卸载重装。(也有小伙伴没有卸载直接重装也行的,个人习惯卸载重装)
VS2015完全卸载:利用TotalUninstaller彻底卸载Visual Studio2013、2015
VS2017安装:VS2017下载地址和安装教程(图解)

超级推荐上面链接中的VS2017下载方式,有个简体中文版的安装引导程序,很方便~

<think>好的,用户问的是如何区分PC和H5获取录音权限。首先,我需要明确用户的需求。他们可能是在开发一个需要录音功能的Web应用,想要了解在桌面浏览器(PC)和移动浏览器(H5)上获取麦克风权限的不同方法。需要从技术实现、API使用、用户交互、兼容性等方面进行分析。 首先,回忆一下Web Audio API的相关知识。在Web开发中,获取用户麦克风权限通常使用navigator.mediaDevices.getUserMedia方法。这个方法在PC和移动端的基本调用方式是一样的,但实际应用中可能会有差异。需要分步骤说明两者的不同点。 接下来,权限请求的触发方式。在PC端,大多数浏览器要求用户必须在用户交互(比如点击事件)中触发权限请求,否则会被阻止。而在移动端,尤其是H5页面,可能同样需要用户交互,但不同移动浏览器的行为可能不同。需要确认这一点,是否有例外情况。 然后,用户提示的差异。PC端浏览器通常会在地址栏显示权限请求的图标,而移动端可能会以弹窗或底部提示的方式出现。这里可能需要具体举例,比如Chrome在PC和手机上的不同表现。 安全上下文的要求。无论是PC还是移动端,使用getUserMedia都需要在HTTPS环境下,本地开发环境(localhost)除外。这一点是否一致?需要确认。 设备检测方面,移动端可能需要处理更多设备适配问题,比如前后麦克风的选择,而PC端可能通常只有一个麦克风。但这里可能需要更准确的描述,比如移动设备可能有多个麦克风,但通常由系统管理,而开发者可能不需要特别处理。 兼容性问题。需要列举不同浏览器在PC和移动端对录音权限的支持情况。比如Safari在iOS上的限制,或者某些安卓浏览器的不同行为。 接下来,代码示例部分。需要提供一个基本的请求麦克风权限的代码示例,并指出在PC和H5中的注意事项。比如在移动端可能需要处理自动播放策略,或者用户拒绝后的不同处理方式。 另外,权限持久化方面,PC端浏览器可能会记住用户的选择,而移动端可能每次都需要重新请求,或者有不同的会话管理方式。需要确认不同浏览器的具体行为。 最后,总结关键点,帮助用户区分两者的主要差异,比如触发方式、用户提示、兼容性处理等。确保回答结构清晰,步骤明确,用户能够逐步理解和应用。 需要验证一些不确定的点,比如移动端是否真的每次都需要用户交互触发,或者不同浏览器是否有不同的策略。例如,iOS上的Safari对getUserMedia的调用是否有严格的用户手势要求,而Chrome on Android是否允许在某些情况下自动触发。此外,权限请求的UI展示在不同平台上的具体表现,可能需要进一步查证。 另外,设备检测方面,是否需要使用mediaDevices.enumerateDevices来列出麦克风设备,这在移动端是否有必要,或者是否通常只有一个可用麦克风。这部分可能需要简化,避免复杂化问题。 最后,确保回答符合用户可见层的要求,结构清晰,逐步解决问题,并且内容真实可靠。避免技术错误,比如错误的API名称或不兼容的浏览器示例。</think>区分PC端和移动端H5获取录音权限的实现差异,主要涉及浏览器API调用方式、用户交互流程及兼容性处理。以下是关键点分析: --- ### **一、核心API调用** 无论PC或H5均使用Web API `navigator.mediaDevices.getUserMedia()`,但实现细节不同: ```javascript // 通用代码框架 async function requestMicrophone() { try { const stream = await navigator.mediaDevices.getUserMedia({ audio: true }); // 成功获取音频流 } catch (error) { // 处理权限拒绝或错误 } } ``` --- ### **二、用户交互差异** | **场景** | **PC端** | **H5(移动端)** | |----------------|----------------------------------------|---------------------------------------| | **触发条件** | 需用户主动交互(如点击按钮) | 同样需用户手势触发,部分浏览器更严格 | | **权限弹窗** | 浏览器顶部地址栏提示 | 系统级弹窗或底部提示栏 | | **持久化策略** | 浏览器可记住用户选择 | 部分移动浏览器每次刷新需重新授权 | --- ### **三、兼容性注意事项** 1. **PC端重点问题** - 旧版Edge/Firefox 需处理 `getUserMedia` 前缀 - Safari 要求 HTTPS 环境 2. **H5移动端特殊处理** - **iOS Safari**:首次拒绝后需手动开启(设置 > Safari > 麦克风) - **微信浏览器**:需配置JS接口安全域名 - **安卓WebView**:需应用层声明录音权限 --- ### **四、关键代码适配技巧** 1. **检测设备类型** ```javascript const isMobile = /Android|webOS|iPhone|iPad|iPod|BlackBerry|IEMobile|Opera Mini/i.test(navigator.userAgent); ``` 2. **错误处理优化** ```javascript catch (error) { if (error.name === 'NotAllowedError') { // 提示用户手动开启权限 if (isMobile) alert('请前往系统设置启用麦克风权限'); } } ``` 3. **自动播放策略(H5重点)** ```javascript // 移动端需在用户交互后立即播放音频,避免静音阻塞 audioElement.play().catch(() => { /* 处理自动播放失败 */ }); ``` --- ### **五、调试建议** 1. **PC端**:使用Chrome `chrome://settings/content/microphone` 管理权限 2. **H5移动端**: - Android Chrome:长按页面 > 站点设置 - iOS Safari:需完全关闭页面后重新进入 --- ### **总结** - **本质相同**:均依赖 `getUserMedia` API,但交互流程和系统限制不同 - **核心差异**:移动端涉及更多系统级权限管控和浏览器兼容问题 - **适配关键**:结合设备检测优化提示逻辑,优先在HTTPS环境部署
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值