- 前言:在看这一篇文章的时候,需要对向量空间有一定的了解,当然可以看我的文章
- 我们正身处在一个向量空间.
让我们进入正题吧!
1.长度
- 虽然我们都身处在一个三维的向量空间,但是如果想用向量空间定量的描述我们的世界,我们还缺少了一些必要的条件.
- 大家对欧几里得应该不陌生吧
- 我们通过几何来描述这个世界,而从小到大,我们接触的都是欧式几何.
- 与欧式几何的空间相比我们很明显缺少了长度和角度两个概念.
- 让我们看看熟知的在二维向量空间(自然基)中我们是如何计算长度的.
- 根据毕达哥拉斯定理(勾股定理)
||A|| = sqrt(a1* a1+a2 *a2)
2.角度
- 外角和内角都可以描述两个向量的夹角,我们定义小的为夹角,保证夹角在0~pi之间.(此时cosx是单调的)
- 知道了定义,我们如何计算呢?
c o s θ = a 1 ⋅ b 1 + a 2 ⋅ b 2 ∣ ∣ a ⃗ ∣ ∣ ⋅ ∣ ∣ b ⃗ ∣ ∣ cos{\theta}=\frac {a_1\cdot b_1+a_2\cdot b_2} {|| \vec a ||\cdot|| \vec b||} cosθ=∣∣a∣∣⋅∣∣b∣∣a1⋅b1+a2⋅b2
我们可以根据欧式几何中的余弦定理可以得到:
A
B
2
=
O
A
2
+
O
B
2
−
2
O
A
⋅
O
B
c
o
s
θ
{AB}^2={OA}^2+{OB}^2-2{OA}\cdot{OB}cos\theta
AB2=OA2+OB2−2OA⋅OBcosθ
通过向量来计算就是:
∣
∣
a
⃗
−
b
⃗
∣
∣
2
=
∣
∣
a
⃗
∣
∣
2
+
∣
∣
b
⃗
∣
∣
2
−
2
∣
∣
a
⃗
∣
∣
⋅
∣
∣
b
⃗
∣
∣
c
o
s
θ
||\vec a - \vec b||^2=||\vec a||^2+||\vec b||^2-2||\vec a||\cdot ||\vec b||cos\theta
∣∣a−b∣∣2=∣∣a∣∣2+∣∣b∣∣2−2∣∣a∣∣⋅∣∣b∣∣cosθ
我们看看上式左边
∣
∣
a
⃗
−
b
⃗
∣
∣
2
=
(
a
1
−
b
1
)
2
+
(
a
2
−
b
2
)
2
||\vec a - \vec b||^2 = (a_1 - b_1)^2 +(a_2 - b_2)^2
∣∣a−b∣∣2=(a1−b1)2+(a2−b2)2
化简得出
∣
∣
a
⃗
∣
∣
2
+
∣
∣
b
⃗
∣
∣
2
−
2
a
1
b
1
−
2
a
2
b
2
||\vec a||^2+||\vec b||^2-2a_1b_1-2a_2b_2
∣∣a∣∣2+∣∣b∣∣2−2a1b1−2a2b2
左右两边整理可得:
c
o
s
θ
=
a
1
⋅
b
1
+
a
2
⋅
b
2
∣
∣
a
⃗
∣
∣
⋅
∣
∣
b
⃗
∣
∣
cos{\theta}=\frac {a_1\cdot b_1+a_2\cdot b_2} {|| \vec a ||\cdot|| \vec b||}
cosθ=∣∣a∣∣⋅∣∣b∣∣a1⋅b1+a2⋅b2
3.点积
- 接下来我们定义一下新的运算点积:
a ⃗ ⋅ b ⃗ = ( a 1 , a 2 ) ⋅ ( b 1 , b 2 ) = a 1 b 1 + a 2 b 2 \vec a \cdot \vec b = (a_1 , a_2)\cdot(b_1,b_2)=a_1b_1+a_2b_2 a⋅b=(a1,a2)⋅(b1,b2)=a1b1+a2b2
那么长度就可以表示为:
a ⃗ ⋅ a ⃗ \sqrt{\vec a\cdot\vec a} a⋅a
角度就可以表示为:
a ⃗ ⋅ b ⃗ ∣ ∣ a ⃗ ∣ ∣ ⋅ ∣ ∣ b ⃗ ∣ ∣ \frac{\vec a\cdot\vec b}{||\vec a||\cdot||\vec b||} ∣∣a∣∣⋅∣∣b∣∣a⋅b
如果我们扩展到n维空间
那么:
x ⃗ ⋅ y ⃗ = ∑ i = 1 n x i y i \vec x \cdot \vec y = \sum_{i=1}^n x_iy_i x⋅y=i=1∑nxiyi - 点积运算满足交换律,结合律,分配律*
- 注意,使用点积的时候一定要在自然基之下
在直角坐标系下我们取两个垂直向量,他们的夹角余弦值为0,但是把他们两个的坐标放在非自然基下,就会得到错误的结果.
4.欧式距离
-
有了上面的基础,我们就能定义欧式距离了
-
你家离学校有多远?电网传输距离有多长?这些都是欧式距离
-
.在二维和三维空间中,我们可以直观的在坐标系中看到,但是超过三维的空间已经没有几何意义.
-
不过在多维空间中,我们仍然有距离的概念
A B = a ⃗ − b ⃗ AB = \vec a - \vec b AB=a−b
5.余弦距离
- 余弦距离,可以通俗的理解为向量间的角度. 那超过三维空间失去了几何意义之后呢?
- 其实,余弦距离表示了向量间的紧密程度
- 当 θ = 0 \theta = 0 θ=0
我们说两个向量关系最为紧密,也就是在一条直线上
-
当 θ = 90 ° \theta = 90° θ=90°
则两个向量毫无关系 -
从物理的角度来看,当力和位移的夹角为0,是不是就没有功?也就可以说他俩毫无关系
-
这里需要展开说一下,当夹角为九十度时,两向量的点积 = 0.(参考上面的余弦公式)
-
在线性代数中,我们也称之为内积,当内积为0,两个向量正交
所以通过"关系"的描述,我们是不是可以得到这么一个结论:
爱的相反词不是恨(θ = 0° or 180°,两个向量都关系紧密),是冷漠(θ = 90°,两个向量毫无关系)
END
如果这篇文章对你有所启发,请点赞,评论哦!