有长度,有角度,有点积,有人性

让我们进入正题吧!
在这里插入图片描述

1.长度

  • 虽然我们都身处在一个三维的向量空间,但是如果想用向量空间定量的描述我们的世界,我们还缺少了一些必要的条件.
  • 大家对欧几里得应该不陌生吧
  • 在这里插入图片描述
  • 我们通过几何来描述这个世界,而从小到大,我们接触的都是欧式几何.
  • 与欧式几何的空间相比我们很明显缺少了长度和角度两个概念.
  • 让我们看看熟知的在二维向量空间(自然基)中我们是如何计算长度的.
  • 在这里插入图片描述
  • 根据毕达哥拉斯定理(勾股定理)
    ||A|| = sqrt(a1* a1+a2 *a2)

2.角度

在这里插入图片描述

  • 外角和内角都可以描述两个向量的夹角,我们定义小的为夹角,保证夹角在0~pi之间.(此时cosx是单调的)
  • 知道了定义,我们如何计算呢?
    在这里插入图片描述
    c o s θ = a 1 ⋅ b 1 + a 2 ⋅ b 2 ∣ ∣ a ⃗ ∣ ∣ ⋅ ∣ ∣ b ⃗ ∣ ∣ cos{\theta}=\frac {a_1\cdot b_1+a_2\cdot b_2} {|| \vec a ||\cdot|| \vec b||} cosθ=a b a1b1+a2b2

我们可以根据欧式几何中的余弦定理可以得到:
A B 2 = O A 2 + O B 2 − 2 O A ⋅ O B c o s θ {AB}^2={OA}^2+{OB}^2-2{OA}\cdot{OB}cos\theta AB2=OA2+OB22OAOBcosθ
通过向量来计算就是:
∣ ∣ a ⃗ − b ⃗ ∣ ∣ 2 = ∣ ∣ a ⃗ ∣ ∣ 2 + ∣ ∣ b ⃗ ∣ ∣ 2 − 2 ∣ ∣ a ⃗ ∣ ∣ ⋅ ∣ ∣ b ⃗ ∣ ∣ c o s θ ||\vec a - \vec b||^2=||\vec a||^2+||\vec b||^2-2||\vec a||\cdot ||\vec b||cos\theta a b 2=a 2+b 22a b cosθ
我们看看上式左边
∣ ∣ a ⃗ − b ⃗ ∣ ∣ 2 = ( a 1 − b 1 ) 2 + ( a 2 − b 2 ) 2 ||\vec a - \vec b||^2 = (a_1 - b_1)^2 +(a_2 - b_2)^2 a b 2=(a1b1)2+(a2b2)2
化简得出
∣ ∣ a ⃗ ∣ ∣ 2 + ∣ ∣ b ⃗ ∣ ∣ 2 − 2 a 1 b 1 − 2 a 2 b 2 ||\vec a||^2+||\vec b||^2-2a_1b_1-2a_2b_2 a 2+b 22a1b12a2b2
左右两边整理可得:
c o s θ = a 1 ⋅ b 1 + a 2 ⋅ b 2 ∣ ∣ a ⃗ ∣ ∣ ⋅ ∣ ∣ b ⃗ ∣ ∣ cos{\theta}=\frac {a_1\cdot b_1+a_2\cdot b_2} {|| \vec a ||\cdot|| \vec b||} cosθ=a b a1b1+a2b2

3.点积

  1. 接下来我们定义一下新的运算点积:
    a ⃗ ⋅ b ⃗ = ( a 1 , a 2 ) ⋅ ( b 1 , b 2 ) = a 1 b 1 + a 2 b 2 \vec a \cdot \vec b = (a_1 , a_2)\cdot(b_1,b_2)=a_1b_1+a_2b_2 a b =(a1,a2)(b1,b2)=a1b1+a2b2
    那么长度就可以表示为:
    a ⃗ ⋅ a ⃗ \sqrt{\vec a\cdot\vec a} a a
    角度就可以表示为:
    a ⃗ ⋅ b ⃗ ∣ ∣ a ⃗ ∣ ∣ ⋅ ∣ ∣ b ⃗ ∣ ∣ \frac{\vec a\cdot\vec b}{||\vec a||\cdot||\vec b||} a b a b
    如果我们扩展到n维空间
    那么:
    x ⃗ ⋅ y ⃗ = ∑ i = 1 n x i y i \vec x \cdot \vec y = \sum_{i=1}^n x_iy_i x y =i=1nxiyi
  2. 点积运算满足交换律,结合律,分配律*
  3. 注意,使用点积的时候一定要在自然基之下
    在直角坐标系下我们取两个垂直向量,他们的夹角余弦值为0,但是把他们两个的坐标放在非自然基下,就会得到错误的结果.

4.欧式距离

  • 有了上面的基础,我们就能定义欧式距离了

  • 你家离学校有多远?电网传输距离有多长?这些都是欧式距离在这里插入图片描述

  • .在二维和三维空间中,我们可以直观的在坐标系中看到,但是超过三维的空间已经没有几何意义.

  • 不过在多维空间中,我们仍然有距离的概念

A B = a ⃗ − b ⃗ AB = \vec a - \vec b AB=a b

5.余弦距离

  • 余弦距离,可以通俗的理解为向量间的角度. 那超过三维空间失去了几何意义之后呢?
  • 其实,余弦距离表示了向量间的紧密程度
  • θ = 0 \theta = 0 θ=0

我们说两个向量关系最为紧密,也就是在一条直线上

  • θ = 90 ° \theta = 90° θ=90°
    则两个向量毫无关系

  • 从物理的角度来看,当力和位移的夹角为0,是不是就没有功?也就可以说他俩毫无关系

  • 这里需要展开说一下,当夹角为九十度时,两向量的点积 = 0.(参考上面的余弦公式)

  • 在线性代数中,我们也称之为内积,当内积为0,两个向量正交

所以通过"关系"的描述,我们是不是可以得到这么一个结论:
爱的相反词不是恨(θ = 0° or 180°,两个向量都关系紧密),是冷漠(θ = 90°,两个向量毫无关系)
在这里插入图片描述

END

如果这篇文章对你有所启发,请点赞,评论哦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

popcorn_min

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值