一个最简单的java程序,没有任何import 为什么还能System.out.println

一个最简单的java程序,没有任何import 为什么还能System.out.println?谢谢
public class test
{
public static void main(String[] args)
{
System.out.println("test");
}
}

 

 

让我们先了解一下,Java 的 package 到底有何用处。

  其实,package 名称就像是我们的姓,而 class 名称就像是我们的名字。package 名称有很多 . 的,就好像是复姓。比如说 java.lang.String,就是复姓 java.lang,名字为 String 的类别;java.io.InputStream 则是复姓
java.io,名字为 InputStream 的类别。

  Java 会使用 package 这种机制的原因也非常明显,就像我们取姓名一样,光是一间学校的同一届同学中,就有可能会出现不少同名的同学,如果不取姓的话,那学校在处理学生数据,或是同学彼此之间的称呼,就会发生很大的困扰。相同的,全世界的 Java 类别数量,恐怕比台湾人口还多,而且还不断的在成长当中,如果类别不使用套件名称,那在用到相同名称的不同类别时,就会产生极大的困扰。幸运的是,Java 的套件名称我们可以自己取,不像人的姓没有太大的选择 ( 所以有很多同名同姓的 ),如果依照 Sun 的规范来取套件名称,那理论上不同人所取的套件名称不会相同 ( 请参阅 "命名惯例"的相关文章 ),也就不会发生名称冲突的情况。

  可是问题来了,因为很多套件的名称非常的长,在写程序时,会多打好多字,花费不少时间,比如说:

  java.io.InputStream is = java.lang.System.in;
  java.io.InputStreamReader isr= new java.io.InputStreamReader(is);
  java.io.BufferedReader br = new java.io.BufferedReader(isr);

  实在是不美观又麻烦。于是,Sun 想了一个办法,就是 import。

  这个 import 就是在程序一开头的时候,先说明程序中会用到那些类别的
  简称,也就是只称呼名字,不称呼他的姓。首先,在档案开头写:

  import java.lang.System;
  import java.io.InputStream;
  import java.io.InputStreamReader;
  import java.io.BufferedReader;

  这几行说明了这四个姓名的类别,在程序中只用他的名字来称呼,所以当程序中提到 System 就是指 java.lang.System,而 InputStream 就是指 java.io.InputStream,依此类推。于是原来的程序就变成:

  InputStream = System.in;
  InputStreamReader isr = new InputStreamReader(is);
  BufferedReader br = new BufferedReader(isr);

  这样看起来是不是清爽多了呢?如果这些类别用的次数很多,那就更能体会到import 的好处了。可是这样还是不够,因为懒是人的天性,还是会有人觉得打太多 import 了也很浪费时间,于是 Sun 又提供了一个方法:

  import java.lang.*;
  import java.io.*;

  意思就是,等一下程序中提到的没有姓名的类别,不是姓 java.lang,就是姓java.io,如果这两个里面有同样名字的类别,而不幸的你又只用名字称呼这个类别,那编译器仍然会跟你抱怨,因为它还是不知道你说的这个类别指那一
个姓的类别。那可不可以再懒一点呢,只写:

  import java.*;

  历史告诉我们,人可以懒,但不能太懒,这样是不行的。因为那些类别是姓 java.io 而不是姓 java。就像姓『诸葛』的人应该不会喜欢你称他为『诸』先生吧。

  为甚么我一开始说 import 跟 #include 不同呢?因为 import 的功能到此为止,它不像 #include 一样,会将档案内容载入进来。import 只是请编译器帮你打字,让编译器把没有姓的类别加上姓,并不会把别的文件的程式码写进来。如果你想练习打字,可以不要使用 import,只要在用到类别的时候,用它的全部姓名来称呼它就行了(就像例子一开始那样),跟使用 import 完全没有甚么两样。

  另外,虽然人不可以太懒,但是 Sun 还是帮我们多偷了一点懒。因为java.lang 这个套件实在是太常太常太常用到了,几乎没有程序不用它的,所以不管你有没有写 import java.lang;,编译器都会自动帮你补上,也就是说编译器只要看到没有姓的类别,它就会自动去 java.lang 里面找找看,看这个类别是不是属于这个套件的。所以我们就不用特别去
import java.lang 了。
而System.out.println在import java.lang 里

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值