社团划分——Fast Unfolding算法

社团划分——Fast Unfolding算法

一、社区划分问题

1、社区以及社区划分

在社交网络中,用户相当于每一个点,用户之间通过互相的关注关系构成了整个网络的结构,在这样的网络中,有的用户之间的连接较为紧密,有的用户之间的连接关系较为稀疏,在这样的的网络中,连接较为紧密的部分可以被看成一个社区,其内部的节点之间有较为紧密的连接,而在两个社区间则相对连接较为稀疏,这便称为社团结构。

(Newman and Gievan 2004) A community is a subgraph containing nodes which are more densely linked to each other than to the rest of the graph or equivalently, a graph has a community structure if the number of links into any subgraph is higher than the number of links between those subgraphs.

如下图:

用红色的点和黑色的点对其进行标注,整个网络被划分成了两个部分,其中,这两个部分的内部连接较为紧密,而这两个社区之间的连接则较为稀疏。如何去划分上述的社区便称为社区划分的问题。

2、社区划分的算法

在社区划分问题中,存在着很多的算法,如由Newman和Gievan提出的GN算法,标签传播算法(Label Propagation Algorithm, LPA),这些算法都能一定程度的解决社区划分的问题,但是性能则是各不相同。总的来说,在社区划分中,主要分为两大类算法

  1. 凝聚方法(agglomerative method):添加边
  2. 分裂方法(divisive method):移除边

在后续的文章中,我们会继续关注不同的社区划分的算法,在这篇文章中,主要关注Fast Unfolding算法。

3、社区划分的评价标准

为了评价社区划分的优劣,Newman等人提出了模块度的概念,用模块度来衡量社区划分的好坏。简单来讲,就是将连接比较稠密的点划分在一个社区中,这样模块度的值会变大,最终,模块度最大的划分是最优的社区划分。

二、模块度的概念

1、模块度的公式

社区划分的目标是使得划分后的社区内部的连接较为紧密,而在社区之间的连接较为稀疏,通过模块度的可以刻画这样的划分的优劣,模块度越大,则社区划分的效果越好 ,模块度的公式如下所示:

Q=12mi,j[Ai,jkikj2m]δ(ci,cj)

其中, m=12i,jAi,j 表示的是网络中的所有的权重, Ai,j 表示的是节点 i 和节点j之间的权重, ki=jAi,j 表示的是与顶点 i 连接的边的权重,ci表示的是顶点被分配到的社区, δ(ci,cj) 用于判断顶点 i 与顶点j是否被划分在同一个社区中,若是,则返回 1 ,否则,返回0

2、模块度公式的简化形式

上述的模块度的计算可以得到以下的简化形式:

Q=cin2m(tot2m)2

其中, in 表示的是社区 c 内部的权重,tot表示的是与社区 c 内部的点连接的边的权重,包括社区内部的边以及社区外部的边。

3、模块度公式的解释

模块度(modularity)指的是网络中连接社区结构内部顶点的边所占的比例,减去在同样的社团结构下任意连接这两个节点的比例的期望值。

三、Fast Unfolding算法

1、Fast Unfolding算法的思路

模块度成为度量社区划分优劣的重要标准,划分后的网络模块度值越大,说明社区划分的效果越好,Fast Unfolding算法便是基于模块度对社区划分的算法,Fast Unfolding算法是一种迭代的算法,主要目标是不断划分社区使得划分后的整个网络的模块度不断增大。

2、Fast Unfolding算法的过程

Fast Unfolding算法主要包括两个阶段,如下图所示:

第一阶段称为Modularity Optimization,主要是将每个节点划分到与其邻接的节点所在的社区中,以使得模块度的值不断变大;第二阶段称为Community Aggregation,主要是将第一步划分出来的社区聚合成为一个点,即根据上一步生成的社区结构重新构造网络。重复以上的过程,直到网络中的结构不再改变为止。

具体的算法过程如下所示:

  1. 初始化,将每个点划分在不同的社区中;
  2. 对每个节点,将每个点尝试划分到与其邻接的点所在的社区中,计算此时的模块度,判断划分前后的模块度的差值ΔQ是否为正数,若为正数,则接受本次的划分,若不为正数,则放弃本次的划分;

    • 重复以上的过程,直到不能再增大模块度为止;
    • 构造新图,新图中的每个点代表的是步骤3中划出来的每个社区,继续执行步骤2和步骤3,直到社区的结构不再改变为止。
    • 注意:在步骤2中计算节点的顺序对模块度的计算是没有影响的,而是对计算时间有影响

      四、算法实现

      针对上图表示的网络,最终的结果为:

      这里写图片描述

      可以使用下面的程序实现其基本的原理:

      import string
      
      def loadData(filePath):
          f = open(filePath)
          vector_dict = {}
          edge_dict = {}
          for line in f.readlines():
              lines = line.strip().split("\t")
      
              for i in xrange(2):
                  if lines[i] not in vector_dict:
                      #put the vector into the vector_dict
                      vector_dict[lines[i]] = True
                      #put the edges into the edge_dict
                      edge_list = []
                      if len(lines) == 3:
                          edge_list.append(lines[1-i]+":"+lines[2])
                      else:
                          edge_list.append(lines[1-i]+":"+"1")
                      edge_dict[lines[i]] = edge_list
                  else:
                      edge_list = edge_dict[lines[i]]
                      if len(lines) == 3:
                          edge_list.append(lines[1-i]+":"+lines[2])
                      else:
                          edge_list.append(lines[1-i]+":"+"1")
                      edge_dict[lines[i]] = edge_list
      
      return vector_dict, edge_dict
      
      def modularity(vector_dict, edge_dict):
          Q = 0.0
          # m represents the total wight
          m = 0
          for i in edge_dict.keys():
              edge_list = edge_dict[i]
              for j in xrange(len(edge_list)):
                  l = edge_list[j].strip().split(":")
                  m += string.atof(l[1].strip())
      
          # cal community of every vector
          #find member in every community
          community_dict = {}
          for i in vector_dict.keys():
              if vector_dict[i] not in community_dict:
                  community_list = []
              else:
                  community_list = community_dict[vector_dict[i]]
      
              community_list.append(i)
              community_dict[vector_dict[i]] = community_list
      
          #cal inner link num and degree
          innerLink_dict = {}
          for i in community_dict.keys():
              sum_in = 0.0
              sum_tot = 0.0
              #vector num
              vector_list = community_dict[i]
              #print "vector_list : ", vector_list
              #two loop cal inner link
              if len(vector_list) == 1:
                  tmp_list = edge_dict[vector_list[0]]
                  tmp_dict = {}
                  for link_mem in tmp_list:
                      l = link_mem.strip().split(":")
                      tmp_dict[l[0]] = l[1]
                  if vector_list[0] in tmp_dict:
                      sum_in = string.atof(tmp_dict[vector_list[0]])
                  else:
                      sum_in = 0.0
              else:
                  for j in xrange(0,len(vector_list)):
                      link_list = edge_dict[vector_list[j]]
                      tmp_dict = {}
                      for link_mem in link_list:
                          l = link_mem.strip().split(":")
                          #split the vector and weight
                          tmp_dict[l[0]] = l[1]
                      for k in xrange(0, len(vector_list)):
                          if vector_list[k] in tmp_dict:
                              sum_in += string.atof(tmp_dict[vector_list[k]])
      
              #cal degree
              for vec in vector_list:
                  link_list = edge_dict[vec]
                  for i in link_list:
                      l = i.strip().split(":")
                      sum_tot += string.atof(l[1])        
              Q += ((sum_in / m) - (sum_tot/m)*(sum_tot/m))
          return Q
      
      def chage_community(vector_dict, edge_dict, Q):
          vector_tmp_dict = {}
          for key in vector_dict:
              vector_tmp_dict[key] = vector_dict[key]
      
          #for every vector chose it's neighbor
          for key in vector_tmp_dict.keys():
              neighbor_vector_list = edge_dict[key]
              for vec in neighbor_vector_list:
                  ori_com = vector_tmp_dict[key]
                  vec_v = vec.strip().split(":")
      
                  #compare the list_member with ori_com
                  if ori_com != vector_tmp_dict[vec_v[0]]:
                      vector_tmp_dict[key] = vector_tmp_dict[vec_v[0]]
                      Q_new = modularity(vector_tmp_dict, edge_dict)
                      #print Q_new
                      if (Q_new - Q) > 0:
                          Q = Q_new
                      else:
                          vector_tmp_dict[key] = ori_com
          return vector_tmp_dict, Q
      
      def modify_community(vector_dict):
          #modify the community
          community_dict = {}
          community_num = 0
          for community_values in vector_dict.values():
              if community_values not in community_dict:
                  community_dict[community_values] = community_num
                  community_num += 1
          for key in vector_dict.keys():
              vector_dict[key] = community_dict[vector_dict[key]]
          return community_num
      
      def rebuild_graph(vector_dict, edge_dict, community_num):
          vector_new_dict = {}
          edge_new_dict = {}
          # cal the inner connection in every community
          community_dict = {}
          for key in vector_dict.keys():
              if vector_dict[key] not in community_dict:
                  community_list = []
              else:
                  community_list = community_dict[vector_dict[key]]
      
              community_list.append(key)
              community_dict[vector_dict[key]] = community_list
      
          # cal vector_new_dict
          for key in community_dict.keys():
              vector_new_dict[str(key)] = str(key)
      
          # put the community_list into vector_new_dict
      
          #cal inner link num
          innerLink_dict = {}
          for i in community_dict.keys():
              sum_in = 0.0
              #vector num
              vector_list = community_dict[i]
              #two loop cal inner link
              if len(vector_list) == 1:
                  sum_in = 0.0
              else:
                  for j in xrange(0,len(vector_list)):
                      link_list = edge_dict[vector_list[j]]
                      tmp_dict = {}
                      for link_mem in link_list:
                          l = link_mem.strip().split(":")
                          #split the vector and weight
                          tmp_dict[l[0]] = l[1]
                      for k in xrange(0, len(vector_list)):
                          if vector_list[k] in tmp_dict:
                              sum_in += string.atof(tmp_dict[vector_list[k]])
      
              inner_list = []
              inner_list.append(str(i) + ":" + str(sum_in))
              edge_new_dict[str(i)] = inner_list
      
          #cal outer link num
          community_list = community_dict.keys()
          for i in xrange(len(community_list)):
              for j in xrange(len(community_list)):
                  if i != j:
                      sum_outer = 0.0
                      member_list_1 = community_dict[community_list[i]]
                      member_list_2 = community_dict[community_list[j]]
      
                      for i_1 in xrange(len(member_list_1)):
                          tmp_dict = {}
                          tmp_list = edge_dict[member_list_1[i_1]]
      
                          for k in xrange(len(tmp_list)):
                              tmp = tmp_list[k].strip().split(":");
                              tmp_dict[tmp[0]] = tmp[1]
                          for j_1 in xrange(len(member_list_2)):
                              if member_list_2[j_1] in tmp_dict:
                                  sum_outer += string.atof(tmp_dict[member_list_2[j_1]])
      
                      if sum_outer != 0:
                          inner_list = edge_new_dict[str(community_list[i])]
                          inner_list.append(str(j) + ":" + str(sum_outer))
                          edge_new_dict[str(community_list[i])] = inner_list
          return vector_new_dict, edge_new_dict, community_dict
      
      def fast_unfolding(vector_dict, edge_dict):
          #1. initilization:put every vector into different communities
          #   the easiest way:use the vector num as the community num
          for i in vector_dict.keys():
              vector_dict[i] = i
      
          #print "vector_dict : ", vector_dict
          #print "edge_dict : ", edge_dict
      
          Q = modularity(vector_dict, edge_dict)  
      
          #2. for every vector, chose the community
          Q_new = 0.0
          while (Q_new != Q):
              Q_new = Q
              vector_dict, Q = chage_community(vector_dict, edge_dict, Q)
          community_num = modify_community(vector_dict)
          print "Q = ", Q
          print "vector_dict.key : ", vector_dict.keys()
          print "vector_dict.value : ", vector_dict.values()
          Q_best = Q
          while (True):
              #3. rebulid new graph, re_run the second step
              print "edge_dict : ",edge_dict
              print "vector_dict : ",vector_dict
              print "\n rebuild"
              vector_dict, edge_new_dict, community_dict = rebuild_graph(vector_dict, edge_dict, community_num)
              #print vector_dict
              print "community_dict : ", community_dict
      
              Q_new = 0.0
              while (Q_new != Q):
                  Q_new = Q
                  vector_dict, Q = chage_community(vector_dict, edge_new_dict, Q)
              community_num = modify_community(vector_dict)
              print "Q = ", Q
              if (Q_best == Q):
                  break
              Q_best = Q
              vector_result = {}
              for key in community_dict.keys():
                  value_of_vector = community_dict[key]
                  for i in xrange(len(value_of_vector)):
                      vector_result[value_of_vector[i]] = str(vector_dict[str(key)])
              for key in vector_result.keys():
                  vector_dict[key] = vector_result[key]
              print "vector_dict.key : ", vector_dict.keys()
              print "vector_dict.value : ", vector_dict.values()
      
          #get the final result
          vector_result = {}
          for key in community_dict.keys():
              value_of_vector = community_dict[key]
              for i in xrange(len(value_of_vector)):
                  vector_result[value_of_vector[i]] = str(vector_dict[str(key)])
          for key in vector_result.keys():
              vector_dict[key] = vector_result[key]
          print "Q_best : ", Q_best
          print "vector_result.key : ", vector_dict.keys()
          print "vector_result.value : ", vector_dict.values()
      
      if __name__ == "__main__":
          vector_dict, edge_dict=loadData("./cd_data.txt")
      
          fast_unfolding(vector_dict, edge_dict)
      

      参考文献

      1. Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, Etienne Lefebvre, Fast unfolding of communities in large networks, in Journal of Statistical Mechanics: Theory and Experiment 2008 (10), P1000
      2. 社区发现算法FastUnfolding的GraphX实现 http://www.tuicool.com/articles/Jrieue
评论 72
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值