面向多兵种联合作战的环境感知与智能决策技术

本文介绍了一套新型合成营智能网联系统,该系统基于军事大模型、大数据、高速网络与人工智能,实现多兵种智能化指挥与协同控制。系统具有高度模块化、分布式、自适应和可扩展性,旨在提升部队作战效能和适应性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

面向多兵种联合作战的环境感知与智能决策技术

摘要:本文介绍了一套新型合成营智能网联系统的研发方案与实施方法。该系统基于军事大模型、大数据、高速网络与人工智能等技术,实现了对多兵种联合作战的智能化指挥与协同控制。该系统具有高度模块化、分布式、自适应和可扩展的特点,能够适应复杂多变的作战环境与任务需求。该系统是一项长期而复杂的军事项目,需要持续投入与创新优化。但如果严格执行本文提出的方案,并根据实际情况进行调整与改进,必将成功研制出一套高度智能化的网络系统,并为提高部队编队作战能力提供有力支撑。

关键词:新型合成营智能网联系统 军事大模型、大数据、高速网络与人工智能 多兵种联合作战 智能化指挥与协同控制 高度模块化、分布式、自适应和可扩展 研发方案与实施方法

随着现代战争的复杂性与不确定性不断增加,传统的单一兵种作战方式已经难以适应多变的战场环境。为了提高部队的作战效能与适应性,我军在近年来大力推进合成营的建设与发展。合成营是指有多个兵种所组成的营级作战单位,包含有坦克、步兵、炮兵、工兵等分队,几乎囊括了陆军的所有基础兵种,在营一级上就解决了步坦协同、步炮协同、破障开路等问题1。合成营具有高度的自主性与灵活性,能够根据任务需要快速重组与调整,实现多兵种联合作战。

然而,要发挥合成营的作战优势,也需要解决一系列的技术难题。其中最关键的是如何实现对复杂环境的智能感知与对多兵种的智能决策。环境感知是指通过各种传感器采集环境数据,对目标进行检测、识别与跟踪,建立态势图像,为指挥决策提供信息支撑。智能决策是指通过人工智能算法对环境数据进行分析、推理与优化,为指挥员提供最佳方案,实现资源配置与行动规划。这两项技术是合成营作战指挥系统的核心,也是本文要探讨的主题。

本文将从以下几个方面对面向多兵种联合作战的环境感知与智能决策技术进行分析与探讨:

一、需求与目标分析

分析新型合成营多兵种联合作战环境与任务特点,提出系统功能目标与技术指标。

(1) 作战环境特点:新型合成营面临着复杂多变的作战环境,如山地、沙漠、城市等不同地形,以及电子干扰、网络攻击等不同威胁。这些环境要求系统具有高度的适应性与抗干扰性。

数据集介绍:野生动物目标检测数据集 一、基础信息 数据集名称:野生动物目标检测数据集 图片数量: - 训练集:11,787张图片 - 验证集:643张图片 - 测试集:431张图片 总计:12,861张真实场景图片 分类类别: - Elephant(象):陆生大型哺乳动物,包含种自然环境中的活动姿态。 - Bear(熊):涵盖不同种类的熊科动物,包括静态及运动状态。 - Cheetah(猎豹):强调高速运动状态下的动态捕捉样本。 - Deer(鹿):包含林地和草原环境中的鹿群及个体样本。 - Fox(狐):涵盖种狐狸品种的样化行为模式。 标注格式: YOLO格式,包含标准化的归一化坐标标注,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面视角等角度拍摄的野生动物图像,包含昼夜不同光照条件下的样本。 二、适用场景 生态监测系统开发: 支持构建自然保护区智能监测系统,实时检测野生动物活动轨迹并统计种群分布。 自动驾驶环境感知: 用于训练车辆视觉系统识别道路周边野生动物的能力,提升行车安全系数。 野生动物研究分析: 提供动物行为学研究的结构化数据支撑,支持物种活动模式分析栖息地研究。 安防监控系统升级: 适用于农场、林区等场景的智能安防系统开发,精准识别潜在动物威胁。 三、数据集优势 物种覆盖: 包含5类高关注度野生动物,覆盖陆地生态系统的关键指示物种。 场景样性: 数据采集涵盖丛林、草原、山地等种自然生境,增强模型泛化能力。 标注专业性: 经动物学专家校验的精准边界框标注,确保目标定位分类准确性。 任务适配性: 原生YOLO格式支持快速迁移至目标检测、行为分析、密度估计等衍生任务。 规模优势: 超万级标注样本量,有效支撑深度神经网络的特征学习需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值