复杂度分析之斐波那契数列

本文探讨了斐波那契数列的定义,通过递归方式展示了函数实现,并分析了其时间复杂度在O(2^(n/2))到O(2^n)之间,空间复杂度为O(n)。通过对代码的调试和汇编查看,解释了为何递归调用只占用一次栈空间的疑问。
摘要由CSDN通过智能技术生成

数列定义

英文名叫Fibonacci sequence,翻译过来就是斐波那契数列,其特点如下:0 1 1 2 3 5 8 ...,简单归纳就是F(0)=0,F(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)

函数式

常见的代码表达式采用递归,如下所示

int f(int n){
	if( n <= 1 ) return n;
	else return f(n-1)+f(n-2);
}

时间复杂度

此函数较复杂,无法直接看出,假设n对应复杂度T(n),由于if( n <= 1 )执行1次,f(n-1)执行1次,f(n-2)执行1次,然后f(n-1)和f(n-2)执行一次,因此有T(n)=T(n-1)+T(n-2)+4,忽略次要项,得到T(n)=T(n-1)+T(n-2),根据数学知识可得通项式为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值