一个高效的通用光学卫星数据正射校正程序

本文介绍了一种能处理多数光学遥感卫星数据的正射校正程序,利用99脚本语言进行处理,适用于GF1、GF多模、吉林1号和资源3号等卫星数据。程序包括准备DEM数据、选择待校正数据、正射校正等步骤,并展示了不同卫星数据的正射校正速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

李国春

随着高分辨率对地观测卫星发射的日益增多,对数据处理软件的要求也越来越高。通常每个系列卫星都有自己的数据特点并需要专门的处理软件,但卫星数量的增加为每种卫星单独设计软件的压力越来越大。本文介绍的一种处理方案旨在能够正射校正处理大多数的光学遥感卫星的观测数据。

将卫星运营部门发布的卫星数据处理成用户数据最重要的处理成本是正射校正部分。这里提供的处理方案可以快速无人工干预处理由有理式(RPC)参数描述的一级数据。

本文演示处理了几种卫星数据,更多类别的卫星(尤其是近年大量发射的新卫星)数据用户可以用本文程序试验处理,遇有问题可以及时反馈以便修正处理。

一、99脚本语言处理代码

1. 准备正射校正用DEM数据

	Print("开始生成中国区 SRTM 90m DEM 数据...");
	DWORD tc = GetTickCount();
	//创建 DEM 数据,正射校正用///
	double		demGeoBox[4];				//排列依次为:最小纬度、最小经度、最大纬度和最大经度
	longlong	demHeight = 36000;
	longlong	demWidth = 42000;
	short		demBuffer[demHeight][demWidth];
	double		dbOrgLat = 46.0;			//设置左上角位置的经纬度
	double		dbOrgLon = 95.0;
	short		defaltElv = 0.0;	
	double		demPixSize = 5.0/6000.0;	//SRTM90m = 0.0008333。ASTGTM2、3 DEM 为 0.00027778度/像元.pixsize = 1.0/3600.0;
	DemSrtm90Buffer(demBuffer,dbOrgLat,dbOrgLon,demHeight,demWidth,defaltElv,demGeoBox);
	double dmtm = (GetTickCount() - tc) / 1000.0;
	Print("生成中国区 SRTM 90m DEM 数据用时 %f 秒。",dmtm);

这段代码从SRTM90读来高程数据,存放在DemSrtm90Buffer指向的缓存。数据左上角纬度46.0°N,经度95°E。东西向42000个像元,南北向36000个像元。每个像元5/6000°。这样根据经纬度位置能够定位到对应的高程。

正射校正用DEM数据可以使用SRTM90、ASTGDEM2、3等通用DEM,也可以使用用户自行定义的DEM数据,只需指定开始经纬度位置、像元大小和数据范围,并将数据预存到一个数据缓存中即可。

2.  选择待校正的数据集

	//选择待进行正射校正的卫星数据文件,自动查找对应的RPC数据文件 ///
	longlong	width,height;
	int			bands,datatype;
	STRING tifName = OpenFileDialog(TRUE,"*.tif;*.tiff");//打开一个tif文件
	STRING	rpcName = tifName - '.';
	rpcName = rpcName + ".rpb";
	if(!PathFileExists(rpcName))
	{
		rpcName = tifName - '.';
以下是基于 Sentinel-1(雷达)、Sentinel-2(光学)和珠海一号(高光谱)三种卫星数据处理的中文技术路线图(文字版),内容涵盖从数据预处理到特征提取及分析各环节,适用于植被功能性状与病虫害监测研究: --- ### 🌐 三种卫星图像处理技术路线(详细版) #### 一、数据获取阶段 1. **Sentinel-1 雷达数据(SAR)** * 数据类型:GRD(Ground Range Detected)格式 * 下载方式:Copernicus Open Access Hub 下载 * 影像时间:匹配实地采样期(春季/秋季) 2. **Sentinel-2 光学数据** * 数据类型:Level-1C(TOA反射率) * 下载方式:Copernicus 或 Google Earth Engine * 影像要求:云量 < 5%,多时相(最好是采样前后3天内) 3. **珠海一号高光谱数据** * 数据类型:L1-MSS 或 L1B-CMOS(带RPC文件) * 来源:珠海云遥科技官网或合作数据源 * 影像要求:场景包含采样区域,且辐射质量良好 --- #### 二、数据预处理阶段 1. **Sentinel-1 雷达影像预处理** * 辐射校正(Radiometric Calibration) * 几何校正(Terrain Correction)——基于SRTM * 去斑(Speckle Filtering)——Boxcar/Lee * 极化通道选择(VV 或 VH) * 输出为后向散射系数(σ⁰,单位:dB) 2. **Sentinel-2 光学影像预处理** * 气校正:使用 Sen2Cor 生成 Level-2A 产品 * 波段重采样:统一空间分辨率(10 m) * 波段裁剪:基于 ROI 进行感兴趣区域裁切 * 云掩膜处理:移除云层和阴影像元 * 输出:表面反射率(SR)影像 3. **珠海一号高光谱影像预处理** * 几何校正:利用 RPC + DEM 进行正射校正 * 辐射校正/气校正:QUAC 或 FLAASH 处理 * 波段挑选:去除水汽吸收和噪声波段 * 主成分分析(PCA)或波段融合降维 * 空间配准:与 Sentinel-2 对齐(基准为 10 m) --- #### 三、波段构建与特征提取 1. **植被指数构建** * Sentinel-2:NDVI、NDRE、SAVI、EVI、MTCI、MCARI2 等 * 珠海一号:基于高光谱组合的 PRI、IRECI、NDWI、ARIs * Sentinel-1:RVI、VV/VH 比值、后向散射强度 2. **主成分/特征降维** * PCA 提取前 3–4 主成分(代表结构/生理变化) * 基于 KS 分层提取变量差异显著波段或指数 3. **空间特征叠加** * 按季节分别构建:春季/秋季栅格特征组合 * 统一分辨率栅格叠加,构成训练用多波段影像 --- #### 四、样本提取与模型构建 1. **样地匹配** * 将 10 m × 10 m 实地样方中心点坐标与多源影像配准 * 提取对应波段值,形成样本表(包括病虫害指数) 2. **PIR 计算与等级分类** * PIR = 病叶数 / 总叶片数 * 按阈值划分等级:轻度/中度/重度(0–3级) 3. **模型构建与评估** * 使用 XGBoost + SHAP 方法进行建模 * 特征选择、LOOCV 验证与精度评估(Accuracy, F1) --- #### 五、空间预测与结果分析 1. **最优模型加载** * 选择 Top-n 特征模型(如前 15 个 SHAP 权重最高变量) 2. **栅格预测** * 读取对应季节波段栅格,输入模型进行像素级分类 * 输出 PIR 空间分布图(预测等级栅格) 3. **验证与可视化** * 与桐花树空间分布图叠加,提取其病虫害等级图 * 统计不同等级下桐花树像元数量,分析季节响应差异 --- 继续将其转换为高质量的**技术路线图图片
最新发布
06-06
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值