【博弈论】【第三讲】例题:沙滩博弈

【例题】

A、B两智能体(agent)在长度为1的直线区域上销售相同品种、相同价格的冷饮,游客均匀分布在海滩上且就近购买1单位的冷饮。证明:战略组合 s ∗ = ( 1 2 , 1 2 ) s^*=\left(\frac{1}{2}, \frac{1}{2}\right) s=(21,21)是该智能体博弈的唯一纯战略纳什均衡。

【解】

1.首先清楚博弈论三要素:

  • 参与者集合
  • 参与人的战略集合
  • 列出支付函数

参与者集合就是 S 1 S_1 S1 S 2 S_2 S2,而参与者的战略集合就都是在0与1之间: S 1 = S 2 = [ 0 , 1 ] S_1=S_2=[0,1] S1=S2=[0,1],画在同一个数轴中的关系可见下图:
图一

为了更清楚的表现 S 1 S_1 S1 S 2 S_2 S2之间的战略关系,我们可以用二维图像来表现:

在这里插入图片描述
R 1 = { ( s 1 , s 2 ) ∣ s 1 < s 2 } R 2 = { ( s 1 , s 2 ) ∣ s 1 > s 2 } \begin{aligned} & R_1=\left\{\left(s_1, s_2\right) \mid s_1<s_2\right\} \\ & R_2=\left\{\left(s_1, s_2\right) \mid s_1>s_2\right\} \end{aligned} R1={(s1,s2)s1<s2}R2={(s1,s2)s1>s2}
那么支付函数怎么写呢?
在图一中,我们可以知道:在 [ 0 , S 1 ] [0,S_1] [0,S1]范围内,顾客会买 S 1 S_1 S1,在 [ S 2 , 1 ] [S_2,1] [S21]区间内,顾客会买 S 2 S_2 S2,而在 [ S 1 , S 2 ] [S_1,S_2] [S1,S2]之间的时候,在中点左边顾客会买 S 1 S_1 S1,中点右边顾客会买 S 2 S_2 S2
所以可得到如下的支付函数:
u 1 ( s 1 , s 2 ) = { s 1 + s 2 2 , s 1 < s 2 1 / 2 , s 1 = s 2 1 − s 1 + s 2 2 , s 1 > s 2 u_1\left(s_1, s_2\right)=\left\{\begin{array}{l} \frac{s_1+s_2}{2}, s_1<s_2 \\\\ 1 / 2, \quad s_1=s_2 \\\\ 1-\frac{s_1+s_2}{2}, s_1>s_2 \end{array}\right. u1(s1,s2)= 2s1+s2,s1<s21/2,s1=s212s1+s2,s1>s2
u 2 ( s 1 , s 2 ) = { 1 − s 1 + s 2 2 , s 1 < s 2 1 / 2 , s 1 = s 2 s 1 + s 2 2 , s 1 > s 2 u_2\left(s_1, s_2\right)=\left\{\begin{array}{l} 1-\frac{s_1+s_2}{2}, s_1<s_2 \\\\ 1 / 2, \quad s_1=s_2 \\\\ \frac{s_1+s_2}{2}, s_1>s_2 \end{array}\right. u2(s1,s2)= 12s1+s2,s1<s21/2,s1=s22s1+s2,s1>s2

2.明确博弈三要素之后开始进行证明

我们要证明的是在 S 1 < S 2 S_1<S_2 S1<S2, S 1 > S 2 S_1>S_2 S1>S2,以及 S 1 = S 2 S_1=S_2 S1=S2但不等于 1 2 \frac{1}{2} 21的时候均不是纳什均衡。

证明 S 1 < S 2 S_1<S_2 S1<S2处不存在纳什均衡:
此处我们采取反证法,假设在 S 1 < S 2 S_1<S_2 S1<S2时存在纳什均衡。
也就是上面图二中 R 1 R_1 R1所示的区域。
所以即假设:在 R 1 R_1 R1中存在纳什均衡,设为 s ∗ s^* s。则 s ∗ = ( s 1 ∗ , s 2 ∗ ) s^*=(s_1^*,s_2^*) s=(s1,s2),且 s 1 ∗ < s 2 ∗ s_1^*<s_2^* s1<s2
之后我们假设存在一个任意小的正整数 ε > 0 \varepsilon>0 ε>0,使得 s 1 ′ = s 1 ∗ + ε < s 2 ∗ s_1^{\prime}=s_1{ }^*+\varepsilon<s_2{ }^* s1=s1+ε<s2

在这里插入图片描述
则根据支付函数有:
u 1 ( s 1 ′ , s 2 ∗ ) = s 1 ′ + s 2 ∗ 2 = s 1 ∗ + ε + s 2 ∗ 2 u_1\left(s_1^{\prime}, s_2^*\right)=\frac{s_1^{\prime}+s_2^*}{2}=\frac{s_1^*+\varepsilon+s_2^*}{2} u1(s1,s2)=2s1+s2=2s1+ε+s2
u 1 ( s 1 ∗ , s 2 ∗ ) = s 1 ∗ + s 2 ∗ 2 < s 1 ∗ + ε + s 2 ∗ 2 = u 1 ( s 1 ′ , s 2 ∗ ) u_1\left(s_1^*, s_2 ^*\right)=\frac{s_1^*+s_2^*}{2}<\frac{s_1^*+\varepsilon+s_2^*}{2}=u_1\left(s_1^{\prime}, s_2 ^*\right) u1(s1,s2)=2s1+s2<2s1+ε+s2=u1(s1,s2)
所以我们可以明显观察到, u 1 ( s 1 ∗ , s 2 ∗ ) u_1(s_1^*,s_2^*) u1(s1s2)要小于 u 1 ( s 1 ′ , s 2 ∗ ) u_1(s_1^{\prime},s_2^*) u1(s1s2),所以 s 1 s_1 s1有向右移动的趋势,也即: ε \varepsilon ε越大, s 1 s_1 s1所获得的收益越大,所以 s 1 s_1 s1一定会向右移。则不满足纳什均衡定义。

纳什均衡定义是:如果 s 1 ∗ s_1^* s1 s 2 ∗ s_2^* s2是纳什均衡,那每个参与者对对方都是最优反应,他不愿单独改变战略。
但是在这里, s 1 s_1 s1单独改变战略会对他自己有更有利的影响,所以她当然愿意改变,所以不满足纳什均衡的要求。

证明 S 1 > S 2 S_1>S_2 S1>S2处不存在纳什均衡:
还是使用反证法,假设在 R 2 R_2 R2区域中存在纳什均衡,设纳什均衡的状态分别为 ( s 1 ∗ , s 2 ∗ ) (s_1^*,s_2^*) (s1,s2),则有: s 1 ∗ < s 2 ∗ s_1^*<s_2^* s1<s2.
同样的,假设有一个无穷小的正整数 δ > 0 \delta>0 δ>0,使得满足 s 1 ′ = S 1 1 − δ > s ∗ 2 s_1^{\prime}=S_1{ }_1-\delta>s^*{ }_2 s1=S11δ>s2,关系图如下所示:
在这里插入图片描述
那么根据支付函数有以下两个式子:
u 1 ( s 1 ′ , s 2 ∗ ) = 1 − s 1 ′ + s 2 ∗ 2 = 1 − s 1 ∗ − δ + s 2 ∗ 2 u_1\left(s_1^{\prime}, s_2^*\right)=1-\frac{s_1^{\prime}+s_2^*}{2}=1-\frac{s_1^*-\delta+s_2^*}{2} u1(s1,s2)=12s1+s2=12s1δ+s2
u 1 ( s 1 ∗ , s 2 ∗ ) = 1 − s 1 ∗ + s 2 ∗ 2 < 1 − s 1 ∗ − δ + s 2 ∗ 2 = u 1 ( s 1 ′ , s 2 ∗ ) u_1\left(s_1^*, s_2^*\right)=1-\frac{s_1^*+s_2^*}{2}<1-\frac{s_1^*-\delta+s_2^*}{2}=u_1\left(s_1^{\prime}, s_2^*\right) u1(s1,s2)=12s1+s2<12s1δ+s2=u1(s1,s2)
同理可得, s 1 s_1 s1 s 2 s_2 s2并不是最优反应。

证明 S 1 = S 2 S_1=S_2 S1=S2但小于 1 2 \frac{1}{2} 21处不存在纳什均衡:
假设这个区域中存在纳什均衡 ( s 1 ∗ , s 2 ∗ ) (s_1^*,s_2^*) (s1,s2),且处于小于 1 2 \frac{1}{2} 21的区域,就有: s 2 ∗ = s 1 ∗ < 1 / 2 s{ }_2^*=s_1^*<1 / 2 s2=s1<1/2
假设有一个无穷小的正整数 θ > 0 \theta>0 θ>0,使得式子满足:
s 1 ′ = s 1 ∗ + θ < 1 / 2 s_1^{\prime}=s_1{ }^*+\theta<1 / 2 s1=s1+θ<1/2
则根据支付函数有:
u 1 ( s 1 ′ , s 2 ∗ ) = 1 − s 1 ′ + s 2 ∗ 2 = 1 − s 1 ∗ + θ + s 2 ∗ 2 = 1 − s 1 ∗ − θ 2 = 1 − s 1 ∗ − θ + θ 2 = 1 − ( s 1 ∗ + θ ) + θ 2 > 1 2 + θ 2 > 1 2 = u 1 ( s 1 ∗ , s 2 ∗ ) \begin{aligned} & u_1\left(s_1^{\prime}, s_2^*{ }\right)=1-\frac{s_1^{\prime}+s_2{ }^*}{2}=1-\frac{s_1^*+\theta+s_2^*}{2}=1-s_1^*-\frac{\theta}{2} \\ & =1-s_1^*{ }-\theta+\frac{\theta}{2}=1-\left(s_1^*+\theta\right)+\frac{\theta}{2}>\frac{1}{2}+\frac{\theta}{2}>\frac {1}{2}=u_1\left(s_1{ }^*, s_2{ }^*\right) \end{aligned} u1(s1,s2)=12s1+s2=12s1+θ+s2=1s12θ=1s1θ+2θ=1(s1+θ)+2θ>21+2θ>21=u1(s1,s2)
根据上式同理可得,该关系不满足纳什均衡的定义,所以证明该区间不存在纳什均衡。

证明 S 1 = S 2 S_1=S_2 S1=S2但大于 1 2 \frac{1}{2} 21处不存在纳什均衡:
选取一个正整数 α \alpha α,使得其满足: 0 < α ≤ 1 2 0<\alpha \leq \frac{1}{2} 0<α21,让 s 1 ′ = s 1 ∗ − α = 1 2 − α s_1^{\prime}=s_1^*-\alpha=\frac{1}{2}-\alpha s1=s1α=21α,则有支付函数如下:
u 1 ( s 1 ′ , s 2 ∗ ) = s 1 ′ + s 2 ∗ 2 = 1 / 2 − a + 1 / 2 2 = 1 / 2 − a / 2 < u 1 ( s 1 ∗ , s 2 ∗ ) = 1 / 2 \begin{aligned} & u_1\left(s_1^{\prime}, s_2^*\right)=\frac{s_1^{\prime}+s_2^*}{2}=\frac{1 / 2-a+1 / 2}{2}=1 / 2-a / 2 \\ & <u_1\left(s_1^*, s_2^*\right)=1 / 2 \end{aligned} u1(s1,s2)=2s1+s2=21/2a+1/2=1/2a/2<u1(s1,s2)=1/2

再让 s 1 ′ = s 1 ∗ + α = 1 2 + α s_1^{\prime}=s_1^*+\alpha=\frac{1}{2}+\alpha s1=s1+α=21+α,这时 s 1 ′ > s 1 ∗ = s 2 ∗ s_1^{\prime}>s_1^*=s_2^* s1>s1=s2,这时发现计算支付函数发现仍然是不如1/2处的大:
u 1 ( s 1 ′ , s 2 ∗ ) = 1 − s 1 ′ + s 2 ∗ 2 = 1 − 1 / 2 + a + 1 / 2 2 = 1 / 2 − a / 2 < u 1 ( s 1 ∗ 1 , s 2 ∗ 2 ) = 1 / 2 \begin{aligned} & u_1\left(s_1^{\prime}, s_2^*\right)=1-\frac{s_1^{\prime}+s_2^*}{2}=1-\frac{1 / 2+a+1 / 2}{2}=1 / 2-a / 2 \\ & <u_1\left(s_1 *_1, s_2 *_2\right)=1 / 2 \end{aligned} u1(s1,s2)=12s1+s2=121/2+a+1/2=1/2a/2<u1(s11,s22)=1/2
综上所述,问题得证

【下面有一道类似的题目可以练习一下】

设出售相同商品的商店1、2在长度为1的街道上同时选择各自的位置。其中A的战略空间为 S 1 = [ 0 , 1 ] S_1=[0,1] S1=[0,1],B的战略空间为 S 2 = [ 0 , 1 / 4 ] S_2=[0,1/4] S2=[0,1/4].假设消费者均匀分布在该条街道上,每个消费者就近购买1单位的商品。是分析该博弈是否存在纳什均衡并加以证明。
在这里插入图片描述

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

兜兜里有好多糖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值