求解线性方程组--高斯消去法

 源代码用C++实现~~这里采用的是数值分析里的算法

代码在VC6.0下编译通过,经测试没大问题。

/* 求解线性方程组--高斯消去法 */

#include <iostream>
using namespace std;

/* 二维数组动态分配模板 */
template <class T>
T** Allocation2D(int m, int n)
{
    T **a;
    a = new T*[m];
    for (int i = 0; i < m; i++) {
        a[i] = new T[n];
    }
    return a;
}

int main()
{
    /* 循环变量 */
    int i, j, k;

    /* 系数矩阵的行数 */
    int n;

    /* 增广矩阵 */
    float** a;

    /* 动态生成增广矩阵 */
    cout << "输入系数矩阵的N值,N:";
    cin >> n;
    a = Allocation2D<float>(n, n + 1);

    /* 输入增广矩阵的各值 */
    cout << endl << "输入增广矩阵的各值:/n";
    for (i = 0; i < n; i++) {
        for (j = 0; j < n + 1; j++) {
            cin >> a[i][j];
        }
    }

    // 消去过程
    for (k = 0; k < n - 1; k++) {
        for (i = k + 1; i < n; i++) {
            for (j = k + 1; j < n + 1; j++) {
                a[i][j] = a[i][j] - a[i][k] * a[k][j] / a[k][k];
            }
        }
    }

    // 回代过程
    float temp;
    a[n - 1][n] = a[n - 1][n] / a[n - 1][n - 1];
    for (k = n - 2; k >= 0; k--) {
        temp = 0;
        for (j = k + 1; j < n; j++) {
            temp = temp + a[k][j] * a[j][n];
        }
        a[k][n] = (a[k][n] - temp) / a[k][k];
    }

    // 输出过程
    for (i = 0; i < n; i++) {
        cout << "x" << i << ": " << a[i][n] << endl;
    }

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值