【转载】浅析金庸武侠小说中的哲理意蕴

作者:刘幸

青年文学家2016年30期

 

武侠小说在中国文学中一直占据着一个非常重要的位置。无论是梁羽生,还是金庸,都是当代武侠小说创作的大师。他们的武侠小说,以现代小说的写作技巧为纲,在传统的写作手法的基础上追求创新,因此使武侠小说在现代小说创作中独树一帜,为现代武侠小说的发展做出了巨大的贡献。其中,金庸是武侠小说的大家之一,他的每一个武侠故事都蕴含着丰富的人生意蕴,金庸的武侠世界实质上就是一个活生生的现实世界,身处这个武侠世界里的英雄人物就是一个个人生的缩影,金庸借武侠小说的形式写出了武林中的侠客和现实社会中的人生。评论家陈世骧在给金庸的书函中曾说到“盖读武侠小说者亦易养成一种泛泛的习惯,可说读流了,如听京戏者之听流了,此习惯一成,所求者狭而有限,则所得者亦狭而有限,此为读一般的书听一般的戏则可,但金庸小说非一般者也”。[1]金庸自己也曾经在《笑傲江湖·后记》中谈到:“我写武侠,是想写人生”“只有刻画人生,才有长期的价值,”[2]他的作品给我们描绘了一幕幕的社会戏剧和人生演义,充满了对人生的思考。

 

中国武侠小说的产生可以追溯到唐传奇,唐传奇属于市井文学,这一文学形式深深扎根于市井之间,因此,武侠小说这种文学形式也是来源于社会。虽然小说中充满着许多夸张的艺术描写,但是由于它来自市井,始终无法摆脱市井。可以说,武侠小说的“根”即是社会,而它的“枝叶”则是社会中的人。中国的旧武侠小说属于面向市井的商业文学,作者笔下所描写的事物是表达市民的思想的,在旧社会里,英雄作为拯救者的象征正迎合了旧时期市民阶层对自由、正义和超凡能力的渴望,旧武侠小说既让处于水深火热中的市民们获得了一种补偿性的满足,同时也是他们平淡生活中的一种娱乐与消遣。

 

与旧武侠小说不同,金庸的武侠小说中都会设定一个核心的英雄人物,并将他置身于武林之中,将苦与乐都融入这一英雄人物的身上,演绎人性的悲欢与伟大,凸显人类的生存状况。所以金庸说:“武侠小说并不是纯粹的娱乐性的无聊作品,其中也可以书写人生悲欢,表达较深的人生境界。”[3]与此同时,金庸也曾表达过他写武侠小说的真正目的:“武侠小说本身是娱乐性的东西,但是我希望它多少有一点人生哲学或个人的思想,通过小说可以表现一些自己对社会的看法。”[4]浓厚的历史感和深刻的人生体验形成了金庸武侠小说的深度,他的武侠小说,在解说着历史更诠释着人生。

 

金庸的武侠小说历史内涵丰富,也可看做是历史小说,他的每一部作品几乎都有明确的历史背景,而金庸笔下的英雄人物都是处身于历史动荡时期,其中又多以民族之间的冲突为主导,在冲突中展现出英雄人物的独特风采。例如,在金庸的作品中,《射雕英雄传》写的是汉族与蒙古族的争斗,《天龙八部》讲的是汉人与契丹族的对抗,《鹿鼎记》的故事是发生在反清复明的背景下,因此可以看出,金庸的武侠实际就是当时动乱不安的社会的真实写照。在这一部部的乱世英雄传中,金庸把他对历史的反思展示在世人面前。在他的笔下,中国几千年的封建社会实际上就是一部失败的历史,永远充满着永无休止的反叛,永不停息的战争,而这其间又间杂了人民对于和平盛世的呼唤,盼望安定生活的理想。

 

在金庸的作品中,有对历史的反思,例如在《碧血剑》,这部书中包含了大量的历史人物,并以历史事件为背景构造小说的框架。小说一开头就显示出明确的历史风貌:“大明成祖皇帝永乐六年八月乙未,西南海外浡泥国国王麻那惹加那乃,率同妃子、弟、妹、世子及陪臣来朝,进贡龙脑、鹤顶、玳瑁、犀角、金银宝器等诸般物事。成祖皇帝大悦,嘉劳良久,赐宴奉天门。”[5]这段描写的就是历史真实。书中也写到了皇太极之死、崇祯自杀、吴三桂引清兵入关等重大的历史事件等。同时,金庸的小说在浓厚的历史色彩中关怀人类的命运。“每一英雄都在痛苦与灾难中诞生,体验了生存的困境,自觉或不自觉地探索存在的意义,背负起民族精神。”[6]可见,金庸武侠中人物的命运与历史是分不开的,在这里,英雄的行侠仗义,卫国御侮是对历史困境的反抗和对自身的超越。

 

在金庸的武侠小说中也有对所谓的正统权威的批判。例如在《鹿鼎记》,金庸为我们展示了散发着威严与肃穆的气息的皇宫,巍峨的宫殿和高高的城墙标榜着天子的圣明与不容侵犯,臣子的忠诚,统治的合法,这些都让人们屈服于封建统治之下,对封建制度不敢有所质疑,而金庸却展现了封建社会威严外表下的荒唐与无理的本质,抨击了几千年的封建专制制度。在这部作品中,主人公韦小宝是一个有母无父的一个形象,从小就随母亲在丽春院中长大,恶劣低俗的生存环境让他练就了一身特殊的生存本领,能逆来顺受,见风使舵,虽然这只是一些混生计的小计谋,但是这些小计谋却使他在皇宫中如鱼得水:与皇帝摔跤,智擒鳌拜,制服假太后等,他也因此在皇帝面前宠幸有加。韦小宝用这样一些小计谋赢得了皇帝的信任。有学识的人并没有大的作为,而一些不学无术的小丑却成为了皇帝身边的大红人。由此可以看出,金庸借此有力的抨击了封建制度。

 

除此之外,金庸在他的作品中还极大地嘲讽了当时的传统儒家文化,即封建统治者维持其统治的正统儒家经义。如在《鹿鼎记》中,韦小宝的文化知识算是“斗大的字不识一个”,他的知识都是从妓院里说书、戏曲中得来的,而与他同时代的顾炎武等却都是大学者,饱读诗书,但是这些人却都并没有什么作为,甚至还不如一个近乎于“文盲”的韦小宝。顾炎武身陷囹圄,是韦小宝搭救的;韦小宝还可以策划宫廷政变,他用的就是《水浒传》中的方法。所有的这些,让那些在知识渊博却毫无建树的学者们佩服,最后都回到韦小宝的身边,对韦小宝佩服至极而且力劝韦小宝做皇帝,传统的儒家大家却最终臣服于韦小宝这样不学无术的小人物,可以看出是对当时正统儒家文化的一种讽刺。

 

在金庸的武侠小说中都有一个核心的英雄人物,这些英雄人物都有着鲜明的性格特征。当他们置身于复仇的漩涡和江湖争利之中时,他们都表现出了令人钦佩的气概,他们自我意识的觉醒精神使人震撼。如在《笑傲江湖》中,主人公令狐冲是一个自由自在的浪子形象,他对从小收养他的师父岳不群唯命是从,但是当他亲眼目睹正派人物刘正风和魔教豪侠曲洋因为违反了江湖道义而变得势不两立最终惨遭杀害时,生性具有侠义心肠的他不禁对所谓的江湖正统产生了怀疑,从而走上了背叛正统的道路。在金庸的小说中的江湖道义实际上就是封建道统,江湖中师父的权威表现出了强烈的封建“父为子纲”的父权色彩,而令狐冲在选择正义还是选择江湖道统时,他表现出了对封建道统的反叛。除此之外,在那个视功利如生命的江湖中,令狐冲对待权力也有着他自己的看法,当任我行让他接任日月神教教主时,他说: “晚辈只要一听到甚么‘圣教主甚么‘千秋万代,一统江湖,全身便起鸡皮疙瘩。晚辈喝酒三十碗不醉,多听得几句‘千秋万代,一统江湖忍不住头晕眼花,当场便会醉倒。”[7]而黑木崖的放声一笑更是表达了他对普天下独裁者的极端蔑视。还有《天龙八部》里的大侠萧峰超越了狭隘的民族立场,一心只为平民百姓着想,以死换取契丹皇帝不在侵扰疆土的承诺,这些都是英雄的自我觉醒,也是金庸在现实社会中的思考。

 

在金庸的小说里,武侠故事的最后都是以英雄战胜邪恶之后归隐山林而告终。如杨过与小龙女隐居古墓;张无忌与赵敏浪迹天涯;令狐冲与任盈盈隐于山林琴箫相和等,这些结局都耐人寻味。金庸武侠小说中的退隐,既是对丑恶现实的抗议,也带有一种“有心杀贼,无力回天”的无奈。“在这样一种归隐方式中,生与死的意义渐渐体现在个人的性情上,而不是民族、国家的兴亡之上,男女主人公成为试图超越历史、民族、国家的旁观者和局外人,他们最终选择的是个人的自由。”[8]

 

例如在《连城诀》中,主人公狄云最亲的人是自己的师父和师妹,与他们的相处成了他全部的人生经验,而且师父和师妹也是他的情感寄托。然而师父为了宝藏把他和师妹都欺骗了,而后师妹又离他而去投入了他仇人的怀抱。乃至后来在狱中,小说中唯一的真正侠士,机智过人的丁典也把他当成恶徒与淫贼,不相信他受了天大的冤屈。这些都会引出一些疑问,到底有没有真正的江湖侠义?世间是否存在忠诚?金庸其实是回答了这些问题的,狄云的故事后面,蕴藏的是对人性贪婪的揭示:几乎所有的江湖人物眼睛盯着的都是宝藏,小说中如此多的隐秘与曲折,如此多的险恶都是因为人性的贪婪,狄云对这样的人性这样的江湖只能是哀伤绝望,万念俱灰,只能是“拔剑四顾心茫然”,所以他选择了隐于荒无人烟的山谷中。而这些从根本上看都蕴含着金庸对人生对社会的感悟。

 

以金庸为代表的中国武侠小说,在很大程度上受了到中国传统思想文化的影响,追求的是一种无拘无束,行走于江湖的境界。这属于一种在现实条件下的浪漫主义,在一定层次上继承了远古神话的风格。从金庸小说中看出,字里行间都渗透着对历史和现实的思考。刘建东就曾高度评价金庸的作品:“作者寓文化于技击,借武技较量写出中华文化的内在精神,又借传统文化学理来阐释武功修养乃至人生哲理,做到互为启发,相得益彰。”[9]在金庸封笔的近三十年来,他的武林霸主的地位从来未被撼动过,究其原因就在于他的小说不仅仅单纯为娱乐而作,而是一种对历史的思考,对人生的感悟,正是因为这才使他的武侠小说经久不息,无人可以超越。

 

注释:

 

[1]金庸:《天龙八部·附录》,北京:三联书店,2005年版.

 

[2]金庸:《笑傲江湖·后记》,广州:广州出版社,2013年版.

 

[3]金庸:《天龙八部·后记》,北京:三联书店,2005年版.

 

[4]林以亮、王敬曦、陆离:《金庸访问记》.

 

[5]金庸:《碧血剑》,广州:广州出版社,2013年版.

 

[6]余世静:《浅谈金庸武侠小说中的四谛思想》,重庆师范大学学报,2006年.

 

[7]金庸:《笑傲江湖》,广州:广州出版社,2013年版.

 

[8]宋伟杰.:《从娱乐行动到乌托邦冲动——金庸小说再解读》南京:江苏人民出版社,1999年版.

 

[9]刘建东:《金庸小说与传统文化》,连云港化工高等专科学校学报,2000年.

 

参考文献:

 

[1]严家炎:《金庸小说论稿》,北京:北京大学出版社.

 

[2]金庸:《笑傲江湖》,北京:三联书店.

 

[3]金庸:《天龙八部》,北京:三联书店.

 

[4]陈默:《文化金庸》,北京:东方出版社.

 

[5]金庸:《雪山飞狐》,广州:广州出版社.

【6层】一字型框架办公楼(含建筑结构图、计算书) 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
1、资源项目源码均已通过严格测试验证,保证能够正常运行;、 2项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值