在上一篇博文《决策树的sklearn实现》中,我们建立了一棵完整的决策树,但是如果在建立模型时不设置random_state的数值,score会在某个值附近波动,引起画出来的每一棵树都不一样。它为什么会不稳定呢?如果使用其他数据集,它还会不稳定吗?
无论决策树模型如何进化,在分支上的本质都还是追求某个不纯度相关指标的优化,而不纯度是基于结点计算的,也就是说,决策树在建树时,是靠优化节点来追求一棵优化的树,但最优的结点能够保证最优的树吗?集成算法被用来解决这一问题:sklearn表示,既然一棵树不能保证最优,那就建更多的不同的树,然后从中取最好的。怎样从一组数据集中建不同的树?在每次分支时,不用全部特征,而是随机选取一部分特征,从中选取不纯度相关指标最优的作为分支用的结点。这样,每次生成的树也就不同了。
clf = tree.DecisionTreeClassifier(criterion="entropy",random_state=100)
clf