sklearn机器学习:岭回归用于选取最优正则化系数α的类RidgeCV

本文探讨了传统岭迹图在选择岭回归正则化参数α时的不足,并指出交叉验证是更可靠的选择标准。sklearn.linear_model.RidgeCV提供了一个方便的解决方案,通过交叉验证寻找最小均方误差的α值。关键参数包括alphas、scoring和cv,允许自定义正则化参数集合、评估指标和交叉验证方式。
摘要由CSDN通过智能技术生成

上一篇博文《sklearn机器学习:岭回归Ridge》中,提到了最佳正则化参数 α \alpha α取值选择的重要性。既然要选择 α \alpha α的范围,不可避免地要进行最优参数的选择。

引子:岭迹图

在各种机器器学习教材中,总是教导使用岭迹图来判断正则项参数的最佳取值。传统的岭迹图长这样,形似一个开口的喇叭图(根据横坐标的正负,喇叭有可能朝右或者朝左):
在这里插入图片描述
这个以正则化参数为横坐标,线性模型求解的系数 ω \omega ω为纵坐标的图像,其中每一条彩色的线都是一个 ω \omega ω系数。其目标是建立正则化参数与系数 ω \omega ω之间的直接关系,以此来观察正则化参数的变化是如何影响系数 ω \omega ω拟合的。岭迹图认为:线条交叉越多,则说明特征之间的多重共线性越高。应该选择系数较为平稳的喇叭口所对应的 α \alpha α取值作为最佳的正则化参数的取值。岭迹图的绘制方法非常简单,代码如下:

import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model
#创造10*10的希尔伯特矩阵
np.arange(1, 11) + np.arange(0, 10)[:, np.newaxis]
array([[ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10],
       [ 2,  3,  4,  5,  6,  7,  8,  9, 10, 11],
       [ 3,  4,  5,  6,  7,  8,  9, 10, 11, 12],
       [ 4,  5,  6,  7,  8,  9, 10, 11, 12, 13],
       [ 5,  6,  7,  8,  9
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值