多重共线性——岭回归定义+岭迹分析+岭参数选择

本文探讨了岭回归的概念,通过实例展示了如何在多重共线性情况下,岭回归如何调整参数。岭迹分析揭示了参数变化趋势,而岭参数k的选择则涉及模型稳定性、系数符号合理性和残差平方和等因素。
摘要由CSDN通过智能技术生成

1、岭回归的定义

先看一个例子:
在这里插入图片描述
x1、x2是给定的,模拟的方法产生10个正态随机数,作为误差项,见第(3)行。然后再由回归模型计算出10个y值。
在这里插入图片描述
在这里插入图片描述
添加k
在这里插入图片描述
k不是唯一确定的,下面是不同的k对应的参数值:
在这里插入图片描述

图示:
在这里插入图片描述
当k为0时,即普通线性回归,参数较大,k逐渐变大,B2由负变正,并且两参数的绝对值都变小,并且稳定下来。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值