机器学习(13)岭回归(线性回归的改进)

目录

一、基础理论

API

二、岭回归:预测波士顿房价

总代码


一、基础理论

岭回归:带有L2正则化的线性回归。(为了解决过拟合

对病态数据的拟合要强于最小二乘法

API

sklearn.linear_model.Ridge

 

 (横坐标:正则化力度;        纵坐标:权重系数)

二、岭回归:预测波士顿房价

# 3、岭回归
def Linear3():
    # 1、获取数据集
    boston = load_boston()
    # print(boston)

    # 2、划分数据集
    train_data, test_data, train_target, test_target = train_test_split(boston.data, boston.target, random_state=22)
    # print(train_data)

    # 3、标准化
    transfer = StandardScaler()
    train_data = transfer.fit_transform(train_data)
    test_data = transfer.transform(test_data)
    # print(train_data)

    # 4、创建预估器
    estimator = Ridge()                     # 岭回归
    estimator.fit(train_data, train_target) # 训练

    # 得到模型
    print('岭回归 权重系数:', estimator.coef_)
    print('岭回归 偏置:', estimator.intercept_)

    # 5、模型评估
    predict = estimator.predict(test_data)
    error = mean_squared_error(test_target, predict)
    print('岭回归 均方差:', error)

总代码

# 线性回归:波士顿房价预测(正规方程,梯度下降,岭回归)
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression,SGDRegressor,Ridge
from sklearn.metrics import mean_squared_error


# 1、正规方程优化
def Linear1():
    # 1、获取数据集
    boston = load_boston()
    # print(boston)

    # 2、划分数据集
    train_data, test_data, train_target, test_target = train_test_split(boston.data, boston.target, random_state=22)
    # print(train_data)

    # 3、标准化
    transfer = StandardScaler()
    train_data = transfer.fit_transform(train_data)
    test_data = transfer.transform(test_data)
    # print(train_data)

    # 4、创建预估器,得到模型
    estimator = LinearRegression()              #正规方程优化
    estimator.fit(train_data, train_target)     #训练

    # show
    print('正规方程 权重系数:', estimator.coef_)
    print('正规方程 偏置:', estimator.intercept_)

    # 5、模型评估
    predict = estimator.predict(test_data)
    error = mean_squared_error(test_target, predict)
    print('正规方程 均方差:', error)


# 2、梯度下降优化
def Linear2():
    # 1、获取数据集
    boston = load_boston()
    # print(boston)

    # 2、划分数据集
    train_data, test_data, train_target, test_target = train_test_split(boston.data, boston.target, random_state=22)
    # print(train_data)

    # 3、标准化
    transfer = StandardScaler()
    train_data = transfer.fit_transform(train_data)
    test_data = transfer.transform(test_data)
    # print(train_data)

    # 4、创建预估器
    estimator = SGDRegressor()                  #梯度下降优化
    estimator.fit(train_data, train_target)     #训练

    # 得到模型
    print('梯度下降 权重系数:', estimator.coef_)
    print('梯度下降 偏置:', estimator.intercept_)

    # 5、模型评估
    predict = estimator.predict(test_data)
    error = mean_squared_error(test_target, predict)
    print('梯度下降 均方差:', error)


# 3、岭回归
def Linear3():
    # 1、获取数据集
    boston = load_boston()
    # print(boston)

    # 2、划分数据集
    train_data, test_data, train_target, test_target = train_test_split(boston.data, boston.target, random_state=22)
    # print(train_data)

    # 3、标准化
    transfer = StandardScaler()
    train_data = transfer.fit_transform(train_data)
    test_data = transfer.transform(test_data)
    # print(train_data)

    # 4、创建预估器
    estimator = Ridge()                     # 岭回归
    estimator.fit(train_data, train_target) # 训练

    # 得到模型
    print('岭回归 权重系数:', estimator.coef_)
    print('岭回归 偏置:', estimator.intercept_)

    # 5、模型评估
    predict = estimator.predict(test_data)
    error = mean_squared_error(test_target, predict)
    print('岭回归 均方差:', error)


if __name__ == '__main__':
    Linear1()           # 正规方程
    Linear2()           # 梯度下降
    Linear3()           # 岭回归

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_(*^▽^*)_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值