正态分布均值μ的贝叶斯Bayes估计推导

前面一篇介绍了正态分布均值μ的极大似然估计MLE推导,这篇来介绍正态分布均值μ的贝叶斯Bayes估计推导。
数据x1,x2,…,xn来自正态分布N(μ,σ2),其中σ2已和。
假设μ的先验分布是正态分布N(0,τ2),根据样本x1,…,xn写出μ的Bayes估计。
第一步,写出L(μ)
在这里插入图片描述
上式中,分母积分后与μ无关。
第二步,对上式中的分子求对数和偏导数
在这里插入图片描述
注意,上式中,μN(0,τ2),x1…xnN(0,τ2),这两个都上正态分布。
对于正态分布N(μ,σ2),其对数为下式:
在这里插入图片描述
上式对μ求导后前一项为0,后面为
在这里插入图片描述
第三步,令L的对数偏导为0,化简得
在这里插入图片描述
分析:当n很大时,分母后面的一项可以忽略,就变成了n个样本的平均数x ̅,与极大似然估计相同。

  • 1
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
贝叶斯估计是一种参数估计的方法,它结合了先验概率和观测数据来得出对参数的估计值。对于正态分布均值贝叶斯估计公式推导如下: 设原始数据的样本集合为X={x1, x2, ..., xn},假设这些样本是独立同分布的,并服从正态分布N(μ, σ^2)。其中μ为均值,σ^2为方差,我们的目标是对均值μ进行估计。 首先,我们引入先验概率密度函数p(μ),表示对均值μ的预先假设。一般我们使用无信息先验,即假设μ的先验服从一个较为平坦的概率分布,比如均匀分布或者高斯分布。 根据贝叶斯定理,可以得到参数μ的后验概率分布公式为: p(μ|X) = p(X|μ) * p(μ) / p(X) 其中p(X|μ)为似然函数,表示给定μ下,样本X出现的概率;p(μ)为先验概率密度函数,表示对μ的预先假设;p(X)为归一化常数,用于保证后验概率的和为1。 假设样本X是独立同分布的,那么似然函数可以表示为: p(X|μ) = p(x1|μ) * p(x2|μ) * ... * p(xn|μ) 由于样本X的每一个观测值x都服从正态分布N(μ, σ^2),故似然函数可以写成: p(X|μ) = (1/√(2πσ^2))^n * exp(-(x1-μ)^2/(2σ^2)) * exp(-(x2-μ)^2/(2σ^2)) * ... * exp(-(xn-μ)^2/(2σ^2)) 然后,我们将上述公式带入到贝叶斯定理的后验概率分布公式中,得到: p(μ|X) = (1/√(2πσ^2))^n * exp(-(x1-μ)^2/(2σ^2)) * exp(-(x2-μ)^2/(2σ^2)) * ... * exp(-(xn-μ)^2/(2σ^2)) * p(μ) / p(X) 其中p(μ)为先验概率密度函数,p(X)为归一化常数,对于计算μ的贝叶斯估计值并不重要,故我们可以忽略。 最后,我们通过求解使得后验概率分布达到最大的μ的值来估计真实的均值μ。一般可以通过对概率分布取对数,然后对μ求导等方法来求解最大化的问题。 以上就是对正态分布均值贝叶斯估计公式的详细推导过程。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值