Bayes贝叶斯方法-均值和协方差参数估计及定理证明(一)

Bayes定理的连续形式

先验概率  

观测值 Y

后验概率 




协方差矩阵的贝叶斯方法估计

未知量的先验分布 

 ,X为一组服从多元正态分布的向量;

的先验分布假设为服从分布, 其中为自由度,为Wishart的协方差矩阵,d为维度;

 

先验分布概率密度函数

 


计算后验分布



多维正态分布的 概率密度函数为:




假设 i.i.d




tr(X):trace(X) 为矩阵X的迹,是对角线元素之和;tr(X)=∑xii

trace(X)的性质:





贝叶斯定理推测共轭分布

 

发现,先验和后验分布是共轭的Wishart分布.




 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值