delphi Pascal yolov5 deepsort 目标检测 目标跟踪,支持onnxruntime、dnn、openvino和tensorrt推理yolov5

delphi Pascal yolov5 deepsort 目标检测 目标跟踪,支持onnxruntime、dnn、openvino和tensorrt推理yolov5,使用c++封装成dll,delphi调用封装好的dll,实现目标检测和跟踪

近年来,目标检测和跟踪技术在计算机视觉领域得到了广泛的应用。其中,yolov5和deepsort是较为流行的算法。yolov5是一种高性能的目标检测算法,能够以较快的速度实现高质量的目标检测。而deepsort则是一种基于深度学习的目标跟踪算法,可以在多个摄像机视角下跟踪物体。

在实际应用中,需要将yolov5和deepsort结合起来,进行目标检测和跟踪。为了提高算法的效率和性能,我们对其进行了改进和优化。具体来说,我们使用c++封装了yolov5算法,并支持onnxruntime、dnn、openvino和tensorrt推理。然后,我们将封装好的算法打包成dll文件,供delphi调用。

通过使用我们封装好的dll文件,delphi程序可以实现对视频流中的物体进行目标检测和跟踪。具体来说,delphi程序首先对视频流进行读取和分帧,然后将每一帧图像传递给封装好的dll文件进行目标检测。检测到物体后,dll文件将返回物体的位置和大小信息,并将这些信息传递给delphi程序。接着,delphi程序使用这些信息对物体进行跟踪并显示在视频流中。在跟踪过程中,dll文件还将实时更新物体的位置和大小信息,以适应物体在视频流中的运动。

除了以上功能之外,我们还对算法进行了优化,以提高其效率和性能。具体来说,我们使用了多线程技术对算法进行并行化,以最大限度地发挥硬件资源的优势。同时,我们还对算法进行了精简,以减小算法的体积和复杂度,进一步提高其性能。

总之,通过使用我们封装好的dll文件,delphi程序可以实现高效准确的目标检测和跟踪。我们的算法优化和并行化技术可以极大地提升算法的效率和性能,同时减小算法的体积和复杂度。在未来的计算机视觉应用中,我们相信这种技术将会得到更广泛的应用和推广。

相关代码,程序地址:http://lanzouw.top/676471966472.html
 

### DelphiYOLO 物体检测的集成 为了在 Delphi 应用程序中实现基于 YOLO 的物体检测功能,通常会采用 C++ 或 Python 编写的高性能库来处理核心计算任务,并通过 DLL 接口将其与 Delphi 集成。具体来说,可以利用已经训练好的 YOLO 模型并借助 ONNX Runtime、DNNOpenVINOTensorRT 这样的高效推理引擎来进行预测操作[^1]。 #### 准备工作 - **模型准备**:确保拥有适用于所选硬件平台优化过的预训练 YOLO 模型文件(如 .onnx 文件),以及相应的配置文件。 - **开发环境搭建**:安装 Visual Studio 并设置好 CMake 构建工具链;下载 OpenCV 选定的推理框架 SDKs (ONNXRuntime/DNN/OpenVINO/TensorRT),并将它们加入到项目路径下以便后续编译链接使用。 #### 创建C++动态链接库(DLL) 编写一段简单的 C++ 代码作为接口函数,在其中加载 YOLO 模型并对输入图像执行前向传播得到输出结果: ```cpp extern "C" __declspec(dllexport) void DetectObjects(const char* imagePath, float confidenceThreshold); ``` 此函数接收待分析图片路径字符串参数 `imagePath` 及置信度阈值 `confidenceThreshold` ,内部逻辑涉及读取图像数据送入网络做推断运算最后返回检测框列表给调用方。 对于上述提到的不同类型的推理后端支持,则需根据不同情况调整初始化部分代码片段以适配相应 API 调用方式。 完成以上步骤之后就可以生成可供 Delphi 加载使用的 `.dll` 文件了。 #### 在 Delphi 中调用DLL 接下来是在 Delphi 方面的工作,主要分为两步走: 1. 定义外部过程声明语句匹配之前定义好的导出函数签名; 2. 实现界面交互逻辑触发该外接子程序运行从而获取实时反馈信息展示于界面上。 下面给出一个简化版的例子说明如何做到这一点: ```pascal type TDetectFunc = procedure(imagePathPChar: PAnsiChar; confThreshFloat: Single); cdecl; var hLib: THandle; DetectProc: TDetectFunc; begin hLib := LoadLibrary('YourCppDll.dll'); try @DetectProc := GetProcAddress(hLib,'DetectObjects'); if Assigned(DetectProc) then begin // 假设有一个编辑框控件用于指定要测试的照片位置 DetectProc(PAnsiChar(EditImagePath.Text), StrToFloat(EditConfidence.Text)); end else ShowMessage('Failed to locate function.'); finally FreeLibrary(hLib); end; end; ``` 这段代码展示了怎样安全地加载自定义创建出来的 C++ 动态链接库实例化指向目标方法地址指针变量进而间接调用它传递必要的参数值启动整个流程直至结束释放资源清理现场为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值