import numpy as np
import pickle
from tqdm import tqdm, tqdm_notebook
import random
import time
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
import PIL
from PIL import Image
from sklearn.neighbors import NearestNeighbors
import glob
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
%matplotlib inline
filenames = pickle.load(open('data/filenames-caltech101.pickle', 'rb'))
feature_list = pickle.load(open('data/features-caltech101-resnet.pickle',
'rb'))
class_ids = pickle.load(open('data/class_ids-caltech101.pickle', 'rb'))
num_images = len(filenames)
num_features_per_image = len(feature_list[0])
print("Number of images = ", num_images)
print("Number of features per image = ", num_features_per_image)
# Helper function to get the classname
def classname(str):
return str.split('/')[-
[视觉工程]以图搜图之准确率
最新推荐文章于 2024-10-20 13:50:01 发布