基于融合特征的以图搜图技术

本文介绍了一种基于内容的图像检索方法,侧重于形状的图像检索技术,特别是使用 Hu 不变矩和 HSV 颜色特征。通过图像预处理、特征计算、相似度匹配和结果分析,实现了高效的图像检索。实验表明该方法能够有效检索相似图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



前言

视觉通道是人类感知外部世界的主要入口,图像则是多维度信息最直接的表现方式,更有“一图值千金”的谚语。但是,图像往往包含较多的信息量,文本方式很难表达其全面内容,因此对图像信息进行检索很难进行抽象建模。此外,随着互联网信息技术的发展,如何有效地存储、检索海量图像数据也越来越引起人们的关注。因此,通过有效构建图像数据库,搭建图像检索引擎,高效地利用图像的关键数据信息,并结合已有的搜索技术来实现海量图像的智能检索系统具有重要的现实意义。目前有许多主流搜索引擎均提供了图像搜索通道,如谷歌相似图搜索、百度识图等。在搜索图像时不仅可以根据与图像相关联的文字信息来搜索,而且能够
按照图像内容本身来搜索,具有很高的使用价值。
本案例介绍了基于内容的图像检索的基本知识,但主要研究的是基于形状的图像检索技术,通过提取图像特征并进行建库来智能检索。本案例选择以图像 Hu 不变矩特征、图像 HSV 颜色特征为标准进行图像检索,其基本步骤为:首先,对待检索图像计算 Hu 不变矩特征向量;其次,对待检索图像计算 HSV 颜色特征向量;再次,进行图像融合特征的相似度匹配;最后,在图像库中检索出最相近的 Top10 图像序列作为检索结果。实验结果表明,使用该算法可以有效地检索出相似的图像&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值