GEE实现夜光遥感数据分析

本文介绍了如何在Google Earth Engine (GEE) 中利用NOAA的DMSP-OLS夜间灯光数据集来分析城市发展趋势。通过or()和and()操作展示了城市扩张和主要城市位置,并运用linearFit()方法进行线性分析,揭示了不同区域的夜间灯光变化趋势,以黄色、红色和绿色分别代表快速发展、发展中和发达地区。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近期看到夜光遥感很有意思,想在GEE中看看夜光遥感的数据。首先来看夜光遥感数据的介绍:NOAA/DMSP-OLS/NIGHTTIME_LIGHTS为NOAA的数据产品,DMSP-OLS 夜间灯光时间序列的第4版由无云复合材料组成,这些复合材料使用历年所有可用的存档 DMSP-OLS 平滑分辨率数据制成。
话不多说,直接上代码:

var Night_Light= ee.ImageCollection('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS')
.select('stable_lights');
var Light_Or = Night_Light.or();//Or操作则代表曾经出现光源的地方,代表了城市发展的方向
var Light_And = Night_Light.and();//And操作显示的主要是大城市的位置
var palettes = require('users/gena/packages:palettes');
var palette = palettes.misc.coolwarm[7].slice(3,6)
function createTimeBand(img) {
  var year = img.date().difference(ee.Date('2014-01-01'), 'year');
  return ee.Image(year).float().addBands(img);
}
var fit = Night_Light.map(createTimeBand).reduce(ee.Reducer.linearFit());
Map.addLayer(fit,{min: 0, max: [0.18, 20, -0.18], 
bands: ['scale', 'offset', 'scale']},'stable lights trend');
//利用Linearfit将光源的变化与时间变化进行线性分析发现,
//黄色为快速发展的地区,红色为正在发展的地区,绿色代表发达地区

显示结果如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更多内容请关注微信公众号“生态遥感监测笔记”:
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生态遥感监测笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值