Google Earth Engine(GEE)计算湿度(WET)

今天分享一下在GEE中如何计算湿度分量(wet),湿度的计算方法很简单,具体的公式为
Wet=(b20.1509+b30.1973+b40.3279+b50.3406+b6*(-0.7112)+b7*(-0.4572))/10000
其中b2,b3,b4,b5,b6,b7分别为影像的蓝波段、绿波段、红波段、近红波段、中红外波段 1、中红外波段 2
具体实现代码如下:


//导入自己的研究区,将其定义为roi
//选择山西省为研究区
var roi = ee.FeatureCollection("users/lilei655123/shanxi");
var star_date = '2020-06-01'//定义起始时间
var end_date = '2020-09-30'//定义终止时间
function rmL8Cloud(image) { 
  var cloudShadowBitMask = (1 << 3); 
  var cloudsBitMask = (1 << 5); 
  var qa = image.select('pixel_qa'); 
  var mask = qa.bitwiseAnd(cloudShadowBitMask).eq(0) 
                 .and(qa.bitwiseAnd(cloudsBitMask).eq(0));
  return image.updateMask(mask)
              .copyProperties(image)
              .copyProperties(image, ["system:time_start",'system:time_end']);
}
 
var L8_ = ee.ImageCollection("LANDSAT/LC08/C01/T1_SR").filterBounds(roi)
              .filterDate(star_date, end_date) 
              .map(rmL8Cloud)
              .mean()
              .clip(roi)
print(L8_)  
var img = L8_.clip(roi)
 function sts_minmax (image){
    var minmax = image.reduceRegion({
    reducer: ee.Reducer.minMax(),
    geometry:roi,
    scale: 30,
    maxPixels: 1e13}).values();
    return minmax;}
//wet
var Wet1 = img.expression('B*(0.1509) + G*(0.1973) + R*(0.3279) + NIR*(0.3406) + SWIR1*(-0.7112) + SWIR2*(-0.4572)',{ 
        'B': img.select(['B2']).multiply(0.0001),
       'G': img.select(['B3']).multiply(0.0001),
       'R': img.select(['B4']).multiply(0.0001),
       'NIR': img.select(['B5']).multiply(0.0001),
       'SWIR1': img.select(['B6']).multiply(0.0001),
       'SWIR2': img.select(['B7']).multiply(0.0001)
})
   var minMax = sts_minmax(Wet1);
  var Wet = Wet1.unitScale(minMax.get(1),minMax.get(0))
//统计均值
var mean = Wet.reduceRegion({ 
  reducer: ee.Reducer.mean(), 
  geometry:roi, 
  scale: 30, 
  maxPixels: 1e13
  
});
  print(mean,'平均值')
  //统计标准差
var rsei_std = Wet.reduceRegion({ 
    reducer: ee.Reducer.stdDev(), 
    geometry:roi, 
    scale: 30, 
    maxPixels: 10e13
    
  });
    print(rsei_std,'标准差')// 
    //统计最大值
    var max = Wet.reduceRegion({ 
    reducer: ee.Reducer.max(),// 
    geometry:roi,// 
    scale: 30,// 
    maxPixels: 10e13// 
    });
    print(max,'max')
    //统计最小值
    var min = Wet.reduceRegion({ 
  reducer: ee.Reducer.min(), 
  geometry:roi, 
  scale: 30, 
  maxPixels: 10e13
 
});
print(min,'min')  
Map.centerObject(roi,7) 
var styling = {color:"red",fillColor:"00000000"};
Map.addLayer(roi.style(styling),{},"geometry")
Map.addLayer(Wet, {'min':0,'max':1,'palette':['0300ff', '418504', 'efff07', 'efff07', 'ff0303']}, 'Wet')

计算结果如下:
在这里插入图片描述
统计结果:
在这里插入图片描述
感谢关注,欢迎转发!

声明:仅供学习使用!

**更多内容请关注微信公众号“生态遥感监测笔记”

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生态遥感监测笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值