概率论知识环状及桌形排列问题

关于峁诗松《概率论与数理统计》第1.2第14题,看了答案也觉得不是很懂,于是查了大量的参考资料,才发现原来环状排列问题,是一类很特殊的排列的问题,有自身的规律,自己解题思路如下:

问题:n个人随机的围一圆桌而坐,甲乙相邻的概率?
甲乙看成一个整体的话有(n-1)!这里不要理解成只少了一个人,其实是将甲乙看成是一个人,所以这里充当的是分母,剩下的应该根据乘法原理得2*(n-2)!,得到2/(n-1)

其实,自己得到这样的思路也是查了些资料的,但细想还是不太明白为什么分母为(n-1)!?????这其实是由环形排列规律所决定的。

参考资料如下:

有n个人围坐一圈,问,有多少种不同的坐法?

答:显然排成一列有A(n,n)种,那么收尾相接,就会出现n种重复状态(转一圈)。乘法原理逆用,除以n就可以了。

若问缘由,如下是说:

當與三五好友聚餐時,總要先選個地方坐下來,此時有圓桌、 方桌,甚至於其它形狀的桌子,若任選其中一個來坐,則會有幾種不同的坐法呢? 這類問題便是下面所要提的環狀排列(或稱圓排列)及桌形排列:

 

  • 環狀  :  將一直線的首、尾相連接,使其變成一圓圈,稱之為 " 環狀 (或圓) "。

 

  • 環狀排列  :  將事物沿著一圓周來作排列,稱之為" 環狀排列 (或稱圓排列)"。

  •  

  • 桌形排列 : 當事物是沿著正$n$邊形來作排列時,稱之為 " 桌形排列 "。桌形排列每邊的個數不一定為 1。因此,見此環狀排列更一般的排列方式為 :  $n$個事物的環狀排列,可視為$n$個事物在每邊只能排一個的正$n$邊形上作桌形排列。

  •  環狀排列及桌形排列均只考慮事物的相關位置,而不計較各物件所在的實際位置; 也就是說,如果將所排成的某一環形任意轉動,所得到的結果仍視為同一環狀排列。 (注意,此環狀排列不能翻轉。)先考慮下面的問題:

 

 

問題1 :  甲、乙、丙三人圍一圓桌而坐,共有多少不同的坐法?

 

此即上面提過之環狀排列的問題。我們首先將環狀排列看成直線排列,則三人的排列(不重複)有 $P_{3}^{3}=3!=6$種,分別為

(甲、乙、丙)       (乙、丙、甲)       (丙、甲、乙)

(乙、甲、丙)       (甲、丙、乙)       (丙、乙、甲)

 

 

但是在每一種排法中, 例如 , 若(甲、乙、丙) 這種排法,在環形中為

 

則依逆時針方向每次各移動一位,如下圖所示:

 

 

相對於直線排列分別為 (甲、乙、丙)、(丙、甲、乙)及(乙、丙、甲)。 由於在環狀排列上,這三人的相對位置都沒改變,因此,均視為相同。同理, (乙、甲、丙)、(甲、丙、乙)及(丙、乙、甲)這三種直線排列,在環狀中, 亦視為相同排列。將上述的說明歸納整理如下:

 

直線排列

環狀排列

 

我們可發現:雖然在直線排列中有$3!$種排法,但若將其圍成環狀後, 可知每3種直線排列中,在環狀排列上只視為同一種。所以,其環狀排列數只有 $\frac{\displaystyle 3!}{\displaystyle 3}=2!=(3-1)!$種。

 

若將問題 1 推廣至$n$個不同的物件沿一圓周而排列,且此圓不能翻轉,會有多少種不同的排列數呢?如同上面例子的做法,可先將此 $n$個相異物作直線排列,然後再依序圍成一圈,結果發現直線排列中每$n$種排列在環狀排列上,為同一種排列方式。為什麼呢?我們可把它想成此圓周有 $n$個空格,當$n$個不同物件排定位後,將整體往同一方向移一格,這對直線排列而言是一種新的排列方式,但對環狀排列而言, 卻是同一種排列方式,因各物件的左右關係不變。重覆上述的移動方式,我們發現,每一種環狀排列對應$n$種不同的直線排列 ,而$n$種不同的直線排列數為$P_{n}^{n}=n!$,所以,其環狀排列數為

\begin{displaymath}\frac{n!}{n}=(n-1)!\end{displaymath}

这其实是一个定理,还有一个比较重要的定理:

$m$ 個不同的事物沿一正 $n$ 邊形而排列,其中$m$$n$的倍數,每邊的個數相等,則排列數為

\begin{displaymath}\frac{P^{m}_{m}}{n}=\frac{1}{n} \times m!\end{displaymath}

一个实例:

 

問題2  : 有六個小朋友玩遊戲,它們想圍成一正三角形,每邊的人數一樣(均為 2 人), 請問他們會有幾種不同的圍法呢?

先將此六人來個編號吧!分別為 1、2、3、4、5、6 ,把它們作直線排列有幾種情形呢? 回憶一下吧!直線排列數 $P_{6}^{6}=6!=720$種,將其圍成三角形,每邊為 2 人。因直線排列數太大了 ,無法一一列舉,所以,我們考慮底下其中三組

 

其他依此類推,可發現在 720 種直線排列中,每 3 組直線排列在正三角形排列上視為同一種,故有 $\frac{\displaystyle 1}{\displaystyle 3}\times 6!=240$ 種不同的排列數。

  若推廣至將$m$個不同的事物沿一正$n$邊形而排列,其中$m$$n$的倍數 ,每邊的個數相等,其排列數為何呢?如同上面問題 2 的解法,先將 $m$ 個不同的事物作直線排列,再圍成正 $n$ 邊形,每 $n$ 組直線排列在正 $n$ 邊形排列上, 均視為同一種,故排列數為

\begin{displaymath}\frac{1}{n} \times m!\end{displaymath}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

guangod

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值