ASRT语音识别系统的部署以及模型的使用(运用篇)

本文详述了在Windows上部署ASRT语音识别系统的步骤,包括下载Released包,搭建CUDA和cuDNN环境,安装Anaconda并创建虚拟环境,安装依赖包,解决安装过程中遇到的问题,以及如何使用模型进行本地语音识别和将ASRT服务部署为开机自启动服务。此外,还展示了将ASRT集成到.NET Web项目的示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ASRT语音识别系统的部署以及模型的使用(运用篇)


前言

ASRT是一个中文语音识别系统,由AI柠檬博主开源在GitHub上。

GitHub地址:ASRT_SpeechRecognition

国内Gitee镜像地址:ASRT_SpeechRecognition

文档地址:ASRT语音识别工具文档

本文主要是记录一下我在参考文章:教你如何使用ASRT训练中文语音识别模型 并完成部署以及使用模型进行语音识别的操作步骤。

文章作者比较惜字如金,文中很多细节之处没有细讲,我在windows上进行部署的时候踩了比较多的坑,特此记录下。

本文适用对象:只想搭建一个语音识别服务端,来实现语音识别功能,而不需要训练出自定义的语音识别模型(如:训练出可识别某些方言的模型)。

如需训练自定义模型,可参考文章ASRT语音识别系统的部署以及模型训练


先决条件

众所周知,跑神经网络,要用到英伟达的显卡。

本人硬件参数:

以下是官方配置建议,我的显卡可能不达标,但如果存粹使用训练好的模型来进行语音识别的话,并不需要这么高的设备。

Graphical user interface, text, application, email Description automatically generated

下载ASRT Released包

前往Github下载最新Released包(ASRT v1.3.0)。

image-20230529214157311

下载完成后,需要进行解压。之后,如果GitHub仓库上如果代码有更新,重复上述步骤即可。

我的解压路径:

cd C:\Users\Administrator\Documents\ftp\qianyuhui\src\ASRT_SpeechRecognition

运行环境搭建

操作系统安装CUDA、cuDNN

训练模型请安装好Nvidia GPU驱动和CUDA、cuDNN。

安装步骤

安装过程略过。参考文章:Windows 安装 CUDA/cuDNN

查看CUDA版本

nvcc -V

查看cuDNN版本

进入 cuda 的安装路径, C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\include,找到 cudnn_version.h 选中,以记事本方式打开。

这里,我的是8.8.1

安装Anaconda

安装步骤

安装步骤略过,参考文章:anaconda的安装和使用

查看conda版本信息

Anaconda PowerShell控制台中输入以下命令:

conda info

我的conda版本是23.1.0

项目部署

conda创建python虚拟环境

首先请确保Anaconda 创建python3.10的虚拟环境。

操作步骤

我给asrt单独创建了一个名为:asrt_env的虚拟环境:

Anaconda PowerShell控制台中输入以下命令:

conda create -n asrt_env python=3.10 

image-20230530094335005

查看虚拟环境基本信息

Anaconda PowerShell控制台中输入以下命令:

conda env list 
conda activate asrt_env 
conda info

为ASRT项目安装依赖包

安装依赖包

Anaconda PowerShell控制台中,我们激活asrt_env虚拟环境,并cd到ASRT项目下,通过requirements.txt为其安装依赖包:

conda env list
conda activate asrt_env
cd c:\Users\Administrator\Documents\ftp\qianyuhui\src\ASRT_SpeechRecognition\
pip install -r requirements.txt

这是一个漫长的安装过程,甚至经常因为网速慢导致下载失败。

踩坑记录

我在安装tensorflow-gpu时失败了好几次,因为我conda使用的是清华源,下载tensorflow-gpu及其缓慢:

后来网上找到了提速的办法:

关掉原本的控制台,重新通过asrt_env进入ASRT项目目录,

单独先使用中科大的镜像将tensorflow-gpu安装好:

conda env list 
conda activate asrt_env 
pip --default-timeout=1000000 install -U -i https://pypi.mirrors.ustc.edu.cn/simple/ --upgrade tensorflow-gpu==2.8.4

然后重新安装requirements.txt内的包:

conda env list 
conda activate asrt_env 
cd C:\Users\Administrator\Documents\ftp\qianyuhui\src\ASRT_SpeechRecognition
pip install -r requirements.txt

使用ASRT模型

ASRT Released包中的save_models文件夹下已经有一份训练好的模型文件了

image-20230529220629207

image-20230529220947058

本机进行语音识别

语音识别使用predict_speech_file.py文件。

首选准备一份频率为16000 Hz的wav文件:

image-20230530110132394

Text, application Description automatically generated

第47行代码:load_model()方法中,需要指定模型参数文件(.h)路径。

第48行代码:recognize_speech_from_file()函数里面,填写我们需要识别的录音文件的文件名路径。

完毕后,运行代码,查看识别结果。

conda env list 
conda activate asrt_env 
cd C:\Users\Administrator\Documents\ftp\qianyuhui\src\ASRT_SpeechRecognition 
python predict_speech_file.py

image-20230530110840841

将ASRT部署成服务

这部分参考文章:教你如何使用ASRT部署中文语音识别API服务器

打开asrserver_http.py文件,如图。

image-20230530111943459

默认监听端口为20001。

输入以下命令启动服务:

conda env list 
conda activate asrt_env 
cd C:\Users\Administrator\Documents\ftp\qianyuhui\src\ASRT_SpeechRecognition
python asrserver_http.py

image-20230530112455461

如图说明服务启动成功。

设置ASRT服务开机自启动

我们新建一个bat脚本,把conda 命令都写进去:

image-20230530113202924

image-20230530113544771

第一句:CALL C:\ProgramData\anaconda3\Scripts\activate.bat C:\ProgramData\anaconda3\envs\asrt_env 这句命令意思是在cmd控制台中调用conda activate.bat 去激活 虚拟环境C:\ProgramData\anaconda3\envs\asrt_env;

第二句:cd到当前目录;

第三句:使用python运行 asrserver_http.py 文件。

image-20230530114121401

为【启动.bat】创建快捷方式,然后粘贴到Windows启动文件夹C:\Users\Administrator\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup中。这样就实现了ASRT开机自启动了。

image-20230530114605212

将ASRT集成到web项目中来

这里以.Net Web项目为例来演示,将ASRT服务部署起来之后,在用web网站去访问ASRT API服务。

关键代码如下:

前端:

<html>
<head>
    <meta charset="utf-8" />
    <title>语音录制
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

切糕师学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值