数学分析B1

本文介绍了数学分析的基本概念,包括自然数、整数、有理数和实数的性质。阐述了确界原理、无限集合的基数、有理数的可数性以及实数的不可数性。讨论了数列极限的定义、闭区间上的有界数列必有收敛子列以及连续函数的概念,包括一致连续性和间断点的分类。此外,还涉及导数、微分中值定理及其应用,以及曲线的曲率。内容涵盖了从基础的数列极限到实数系统的深入理解,是数学分析入门的重要知识。
摘要由CSDN通过智能技术生成

《数学分析B1》

1.1.1 自然数和整数

归纳公理

最小数原理

S ⊆ N , S ≠ ∅ S\subseteq N,S\not=\empty SN,S=,则 S S S必有最小元素.

证明:讨论 S S S是否有限.

数学归纳法

证明:反证,找 A m A_m Am不成立的最小的 m m m, A m − 1 A_{m-1} Am1必然成立.

1.1.2 无限集合

单射,满射,1-1映射(双射,1-1对应)

A A A B B B 1-1对应称为 A A A B B B有相同的基数(势)

定义 N N N的基数是"可数的"

  • A A A N N N 1-1对应,则 A A A是可数集合("可数"是对于无限集来说的).
  • A A A存在 A → N A\rightarrow N AN的满射,则 A A A是无限集合.

2 N 2^N 2N的基数是不可数.

R R R的基数是不可数.

A , B A,B A,B可数,则 A × B A\times B A×B可数.证明:斜着标号.

可数个可数集的并是可数集.证明:斜着标号.

1.1.3 有理数

Q = { p q ∣ p ∈ Z , q ∈ Z + } Q=\{\frac{p}{q}|p\in Z,q\in Z_+\} Q={qppZ,qZ+}

N → Z × Z + → Q N\rightarrow Z\times Z_+\rightarrow Q NZ×Z+Q,所以 Q Q Q可数.

不连续,但稠密( ∀ a < b , a , b ∈ Q , ∃ a < b < c \forall a<b,a,b\in Q,\exist a<b<c a<b,a,bQ,a<b<c)

1.1.4 实数

确界原理

S S S是有序集, E ⊆ S E\subseteq S ES

上确界:最小的上界 s u p E supE supE

下确界:最大的下界 i n f E infE infE

定义:设 S S S是有序集, S S S中所有非空有上界的集合定有上确界( S S S中所有非空有下界的集合定有下确界),则称 S S S满足确界原理.

Q Q Q不满足确界原理,如 A = { q ∣ q 2 < 2 , q ∈ Q } A=\{q|q^2<2,q\in Q\} A={qq2<2,qQ}无上确界.

定理: S S S中所有非空有上界的集合定有上确界 ⇔ \Leftrightarrow S S S中所有非空有下界的集合定有下确界.

有序域

S S S是域且有序,还满足:
∀ x , y , z ∈ S \forall x,y,z\in S x,y,zS
x < y ⇒ x + z < y + z x<y\Rightarrow x+z<y+z x<yx+z<y+z
x > 0 , y > 0 ⇒ x × y > 0 x>0,y>0\Rightarrow x\times y>0 x>0,y>0x×y>0

则称 S S S是有序域

实数的定义

S S S是有序域且满足确界原理,称其为 R R R.

实数的基数是不可数.

阿基米德原理1

∀ x , y ∈ R , ∃ n ∈ Z \forall x,y\in R,\exist n\in Z x,yR,nZ满足 n x > y nx>y nx>y

不征了

阿基米德原理2

∀ x < y , x , y ∈ R , ∃ z ∈ Q \forall x<y,x,y\in R,\exist z\in Q x<y,x,yR,zQ满足 x < z < y x<z<y x<z<y

证明:

根据原理1,对于 y − x , 1 y-x,1 yx,1, ∃ n ∈ N \exist n\in N nN满足 n × ( y − x ) > 1 n\times (y-x)>1 n×(yx)>1,即 n y > n x + 1 ny>nx+1 ny>nx+1.

再使用原理1,对于 1 , n x 1,nx 1,nx, ∃ m 1 \exist m_1 m1满足 m 1 > n x m_1>nx m1>nx

S = { k ∣ k ∈ N , k > n x } ⊂ N S=\{k|k\in N,k>nx\}\subset N S={kkN,k>nx}N

m 1 ∈ S ⇒ S ≠ ∅ m_1\in S\Rightarrow S\not= \empty m1SS=

⇒ S \Rightarrow S S中有最小数 m m m

⇒ m > n x ≥ m − 1 \Rightarrow m>nx\geq m-1 m>nxm1

⇒ n x < m ≤ n x + 1 < n y \Rightarrow nx<m\leq nx+1<ny nx<mnx+1<ny

⇒ x < m n < y \Rightarrow x<\frac{m}{n}<y x<nm<y

1.2.1 数列极限

∀ ε > 0 , ∃ N \forall \varepsilon >0,\exist N ε>0,N对于 ∀ n > N \forall n>N n>N,有 ∣ a n − a ∣ < ε |a_n-a|<\varepsilon ana<ε,则称 { a n } \{a_n\} {an}收敛于 a a a,记为 lim ⁡ n → ∞ a n = a \lim_{n\rightarrow\infty}a_n=a limnan=a a n → a ( n → ∞ ) a_n\rightarrow a(n\rightarrow \infty) ana(n)

{ a n } \{a_n\} {an}收敛 ⇒ { a n } \Rightarrow\{a_n\} {an}有界.

极限满足四则运算.

区间上的有界数列必有收敛子列

证明:二分,必有一区间包含无穷项,区间套.

1.3.4.1 lim ⁡ x → 0 sin ⁡ x x = 1 \lim_{x\rightarrow 0}\frac{\sin x}{x}=1 limx0xsinx=1

证明:

  • 引理: x ∈ [ 0 , π 2 ] x\in [0,\frac{\pi}{2}] x[0,2π]时, sin ⁡ x < x < tan ⁡ x \sin x<x<\tan x sinx<x<tanx
  • 0 < 1 − sin ⁡ x x < 1 − cos ⁡ x = 2 sin ⁡ 2 x 2 < 2 sin ⁡ x 2 < x 0<1-\frac{\sin x}{x}<1-\cos x=2\sin^2\frac{x}{2}<2\sin \frac{x}{2}<x 0<1xsinx<1cosx=2sin22x<2sin2x<x
  • 两边夹

1.3.4.2 lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim_{x\rightarrow \infty}(1+\frac{1}{x})^x=e limx(1+x1)x=e

连续

lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x\rightarrow x_0}f(x)=f(x_0) limxx0f(x)=f(x0)

两个连续函数四则运算,复合的结果也是连续函数.

例:求证 ln ⁡ ( x + 1 ) x \frac{\ln (x+1)}{x} xln(x+1)连续

f ( x ) = { ( x + 1 ) 1 x     x ≠ 0 e     x = 0 f(x)=\left\{\begin{aligned}(x+1)^{\frac{1}{x}} ~~~x\not=0\\e~~~x=0\end{aligned}\right. f(x)={(x+1)x1   x=0e   x=0

ln ⁡ f ( x ) = { ln ⁡ ( x + 1 ) x     x ≠ 0 1     x = 0 \ln f(x)=\left\{\begin{aligned}\frac{\ln (x+1)}{x} ~~~x\not=0\\1~~~x=0\end{aligned}\right. lnf(x)=xln(x+1)   x=01   x=0

f ( x ) f(x) f(x) ln ⁡ ( x ) \ln(x) ln(x)都连续,所以原式连续.

左(右)连续

连续函数的有界性

f ∈ C [ a , b ] f\in C[a,b] fC[a,b]( f f f [ a , b ] [a,b] [a,b]上连续),则 f ∣ [ a , b ] {f|}_{[a,b]} f[a,b]有界.

证明:

  • 反证,若 f ∣ [ a , b ] f|_{[a,b]} f[a,b]无界,则 ∀ n ∈ N , ∃ ∣ f ( x n ) ∣ > n \forall n \in N,\exist |f(x_n)|>n nN,f(xn)>n
  • x n ∈ [ a , b ] x_n\in [a,b] xn[a,b],则数列 { x n } \{x_n\} {xn}必有一收敛子列 { x n k } \{x_{n_k}\} {xnk}收敛于 x 0 ∈ [ a , b ] x_0\in [a,b] x0[a,b]
  • 一方面, ∣ f ( x n k ) ∣ ≥ n k → + ∞ |f(x_{n_k})|\geq n_k\rightarrow +\infty f(xnk)nk+
  • 另一方面, lim ⁡ k → + ∞ ∣ f ( x n k ) ∣ = ∣ f ( x 0 ) ∣ \lim_{k\rightarrow +\infty}|f(x_{n_k})|=|f(x_0)| limk+f(xnk)=f(x0),是有限数,产生矛盾.

连续函数的最大最小值定理

f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上最大值和最小值可以取到,即 f ( [ a , b ] ) = [ f ( x ∗ ) , f ( x ∗ ) ] f([a,b])=[f(x_*),f(x^*)] f([a,b])=[f(x),f(x)].

间断

  • 第一类,可去
  • 第一类,跳跃
  • 第二类,极限不存在或不是有限数

一致连续性

对于连续函数 f ( x ) ( x ∈ I ) f(x)(x\in I) f(x)(xI),若 ∀ ε > 0 , ∃ δ \forall \varepsilon>0,\exist\delta ε>0,δ满足 ∀ x 1 , x 2 ∈ I \forall x_1,x_2\in I x1,x2I,若 ∣ x 1 − x 2 ∣ ≤ δ |x_1-x_2|\leq \delta x1x2δ,则有 ∣ f ( x 1 ) − f ( x 2 ) ∣ ≤ ε |f(x_1)-f(x_2)|\leq \varepsilon f(x1)f(x2)ε,则称 f ( x ) f(x) f(x) I I I上有一致连续性.

例:

  • sin ⁡ x \sin x sinx R R R上有一致连续性
  • x 2 x^2 x2 R R R上没有一致连续性,但在 [ a , b ] [a,b] [a,b]上有一致连续性.
  • 1 x \frac{1}{x} x1 ( 0 , 1 ] (0,1] (0,1]上没有一致连续性,但在 [ a , 1 ] ( a > 0 ) [a,1](a>0) [a,1](a>0)上有一致连续性.

区间上的连续函数必有一致连续性

例题: lim ⁡ x → + ∞ f ( x ) ∣ [ a , + ∞ ) = l ⇒ f ( x ) ∣ [ a , + ∞ ) \lim_{x\rightarrow +\infty}f(x)|_{[a,+\infty)}=l\Rightarrow f(x)|_{[a,+\infty)} limx+f(x)[a,+)=lf(x)[a,+)有一致连续性

  • 思路:将 [ a , + ∞ ) [a,+\infty) [a,+)划分为两部分,但中间应当划出一块三八线防止跨过.
  • ∀ ε > 0 , ∃ M \forall \varepsilon>0,\exist M ε>0,M满足 ∀ x > M , ∣ f ( x ) − l ∣ < ε 2 \forall x>M,|f(x)-l|< \frac{\varepsilon}{2} x>M,f(x)l<2ε
  • 对于 f ( x ) ∣ [ a , M + 1 ] , ∃ δ 1 f(x)|_{[a,M+1]},\exist \delta_1 f(x)[a,M+1],δ1满足 ∀ x 1 , x 2 \forall x_1,x_2 x1,x2,若 ∣ x 1 − x 2 ∣ ≤ δ 1 |x_1-x_2|\leq \delta_1 x1x2δ1,则 ∣ f ( x 1 ) − f ( x 2 ) ∣ ≤ ε |f(x_1)-f(x_2)|\leq \varepsilon f(x1)f(x2)ε.
  • δ = min ⁡ { 1 , δ 1 } \delta=\min\{1,\delta_1\} δ=min{1,δ1}
  • ∀ x 1 , x 2 \forall x_1,x_2 x1,x2满足 ∣ x 1 − x 2 ∣ ≤ δ ≤ 1 |x_1-x_2|\leq \delta\leq 1 x1x2δ1, x 1 , x 2 ∈ [ a , M + 1 ] x_1,x_2\in [a,M+1] x1,x2[a,M+1] x 1 , x 2 ∈ [ M , + ∞ ) x_1,x_2\in [M,+\infty) x1,x2[M,+)
  • 得证

可导 ⇒ \Rightarrow 连续

lim ⁡ x → x 0 f ( x ) − f ( x 0 ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 × ( x − x 0 ) = f ′ ( x 0 ) × 0 = 0 \lim_{x\rightarrow x_0}f(x)-f(x_0)=\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}\times (x-x_0)=f'(x_0)\times 0=0 limxx0f(x)f(x0)=limxx0xx0f(x)f(x0)×(xx0)=f(x0)×0=0

连续 ⇏ \not\Rightarrow 可导

例: f ( x ) = ∣ x ∣ f(x)=|x| f(x)=x

复合函数求导

  • 思路: d f ( g ( x ) ) d x = lim ⁡ x → x 0 f ( g ( x ) ) − f ( g ( x 0 ) ) x − s 0 = lim ⁡ x → x 0 f ( g ( x ) ) − f ( g ( x 0 ) ) g ( x ) − g ( x 0 ) × g ( x ) − g ( x 0 ) x − x 0 = d f d g × d g d x \frac{df(g(x))}{dx}=\lim_{x\rightarrow x_0}\frac{f(g(x))-f(g(x_0))}{x-s_0}=\lim_{x\rightarrow x_0}\frac{f(g(x))-f(g(x_0))}{g(x)-g(x_0)}\times \frac{g(x)-g(x_0)}{x-x_0}=\frac{df}{dg}\times\frac{dg}{dx} dxdf(g(x))=limxx0xs0f(g(x))f(g(x0))=limxx0g(x)g(x0)f(g(x))f(g(x0))×xx0g(x)g(x0)=dgdf×dxdg
  • 小问题: x ≠ x 0 x\not=x_0 x=x0 g ( x ) g(x) g(x)可能等于 g ( x 0 ) g(x_0) g(x0)
  • 补丁:令 h ( x ) = { f ( x ) − f ( x 0 ) x − x 0     x ≠ x 0 f ′ ( x 0 )     x = x 0 h(x)=\left\{\begin{aligned} \frac{f(x)-f(x_0)}{x-x_0} ~~~x\not=x_0\\f'(x_0)~~~x=x_0\end{aligned}\right. h(x)=xx0f(x)f(x0)   x=x0f(x0)   x=x0,可知 h ( x ) h(x) h(x)连续
  • d f ( g ( x ) ) d x = lim ⁡ x → x 0 f ( g ( x ) ) − f ( g ( x 0 ) ) x − s 0 = lim ⁡ x → x 0 h ( g ( x ) ) × g ( x ) − g ( x 0 ) x − x 0 = d f d g × d g d x \frac{df(g(x))}{dx}=\lim_{x\rightarrow x_0}\frac{f(g(x))-f(g(x_0))}{x-s_0}=\lim_{x\rightarrow x_0}h(g(x))\times \frac{g(x)-g(x_0)}{x-x_0}=\frac{df}{dg}\times\frac{dg}{dx} dxdf(g(x))=limxx0xs0f(g(x))f(g(x0))=limxx0h(g(x))×xx0g(x)g(x0)=dgdf×dxdg

高阶导数

f ′ ′ ( x ) = d d x ( d f d x ) = d 2 f d x 2 f''(x)=\frac{d}{dx}(\frac{df}{dx})=\frac{d^2f}{dx^2} f(x)=dxd(dxdf)=dx2d2f

f ( x ) f(x) f(x)可导 ⇏ f ′ ( x ) \not\Rightarrow f'(x) f(x)连续

例: f ( x ) = { x 2 sin ⁡ 1 x     x ≠ 0 0     x = 0 f(x)=\left\{\begin{aligned} x^2\sin\frac{1}{x} ~~~x\not=0\\0~~~x=0\end{aligned}\right. f(x)=x2sinx1   x=00   x=0

lim ⁡ x → 0 f ( x ) − 0 x − 0 = lim ⁡ x → 0 x sin ⁡ x = 0 \lim_{x\rightarrow 0}\frac{f(x)-0}{x-0}=\lim_{x\rightarrow 0}x\sin x=0 limx0x0f(x)0=limx0xsinx=0,所以 f ( x ) f(x) f(x) 0 0 0处可导.

f ′ ( x ) = { 2 x sin ⁡ 1 x − cos ⁡ 1 x     x ≠ 0 0     x = 0 f'(x)=\left\{\begin{aligned} 2x\sin\frac{1}{x}-\cos\frac{1}{x} ~~~x\not=0\\0~~~x=0\end{aligned}\right. f(x)=2xsinx1cosx1   x=00   x=0

x → 0 x\rightarrow 0 x0 2 x sin ⁡ 1 x = 0 , cos ⁡ 1 x 2x\sin \frac{1}{x}=0,\cos\frac{1}{x} 2xsinx1=0,cosx1不存在极限,所以 f ′ ( x ) f'(x) f(x) 0 0 0处不连续.

莱布尼茨公式: ( f ( x ) × g ( x ) ) ( n ) = ∑ k = 0 n C n k f ( k ) ( x ) × g ( n − k ) ( x ) (f(x)\times g(x))^{(n)}=\sum_{k=0}^nC_n^kf^{(k)}(x)\times g^{(n-k)}(x) (f(x)×g(x))(n)=k=0nCnkf(k)(x)×g(nk)(x)

向量的极限和导数

r ⃗ ( t ) = ( φ ( t ) , ψ ( t ) ) \vec{r}(t)=(\varphi(t),\psi(t)) r (t)=(φ(t),ψ(t))

极限

∀ ε > 0 , ∃ δ \forall \varepsilon>0,\exist \delta ε>0,δ满足 ∀ t > δ , ∣ r ⃗ ( t ) − a ⃗ ∣ < ε \forall t>\delta,|\vec{r}(t)-\vec{a}|<\varepsilon t>δ,r (t)a <ε,则称 a ⃗ \vec{a} a r ⃗ ( t ) \vec{r}(t) r (t)的极限.

lim ⁡ t → t 0 r ⃗ ( t ) = ( lim ⁡ t → t 0 φ ( t ) , lim ⁡ t → t 0 ψ ( t ) ) \lim_{t\rightarrow t_0}\vec{r}(t)=(\lim_{t\rightarrow t_0}\varphi(t),\lim_{t\rightarrow t_0}\psi(t)) limtt0r (t)=(limtt0φ(t),limtt0ψ(t))

导数

lim ⁡ t → t 0 r ⃗ ( t ) − r ⃗ ( t 0 ) t − t 0 = r ′ ⃗ ( t 0 ) \lim_{t\rightarrow t_0}\frac{\vec{r}(t)-\vec r(t_0)}{t-t_0}=\vec{r'}(t_0) limtt0tt0r (t)r (t0)=r (t0)

r ⃗ \vec{r} r 可导 ⇔ φ ( t ) , ψ ( t ) \Leftrightarrow\varphi(t),\psi(t) φ(t),ψ(t)可导

r ⃗ \vec{r} r 连续 ⇔ φ ( t ) , ψ ( t ) \Leftrightarrow\varphi(t),\psi(t) φ(t),ψ(t)连续

r ′ ⃗ ( t ) = ( φ ′ ( t ) , ψ ′ ( t ) ) \vec{r'}(t)=(\varphi'(t),\psi'(t)) r (t)=(φ(t),ψ(t))

拉格朗日中值定理,rolle定理

rolle定理:设 f ∣ [ a , b ] f|_{[a,b]} f[a,b]连续, f ∣ ( a , b ) f|_{(a,b)} f(a,b)可导,若 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b),则 ∃ ξ ∈ ( a , b ) \exist \xi\in(a,b) ξ(a,b)满足 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0

拉格朗日中值定理:设 f ∣ [ a , b ] f|_{[a,b]} f[a,b]连续, f ∣ ( a , b ) f|_{(a,b)} f(a,b)可导,则 ∃ ξ ∈ ( a , b ) \exist \xi\in(a,b) ξ(a,b)满足 f ′ ( ξ ) = f ( a ) − f ( b ) a − b f'(\xi)=\frac{f(a)-f(b)}{a-b} f(ξ)=abf(a)f(b)

柯西中值定理

f ∣ [ a , b ] , g ∣ [ a , b ] f|_{[a,b]},g|_{[a,b]} f[a,b],g[a,b]连续, f ∣ ( a , b ) , g ∣ ( a , b ) f|_{(a,b)},g|_{(a,b)} f(a,b),g(a,b)可导, ∃ ξ ∈ ( a , b ) \exist \xi\in (a,b) ξ(a,b),满足 f ( a ) − f ( b ) g ( a ) − g ( b ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(a)-f(b)}{g(a)-g(b)}=\frac{f'(\xi)}{g'(\xi)} g(a)g(b)f(a)f(b)=g(ξ)f(ξ)

未知式的极限

0 0 \frac{0}{0} 00

洛必达

∞ ∞ \frac{\infty}{\infty}

洛必达

曲率半径

  • κ = 1 ρ = lim ⁡ Δ x → 0 Δ θ Δ s \kappa=\frac{1}{\rho}=\lim_{\Delta x\rightarrow 0}\frac{\Delta\theta}{\Delta s} κ=ρ1=limΔx0ΔsΔθ
  • Δ s \Delta s Δs:割线拟合, Δ s Δ x = ( Δ x ) 2 + ( Δ y ) 2 Δ x = 1 + ( f ( x + Δ x ) − f ( x ) Δ x ) 2 = 1 + ( f ′ ( x ) ) 2    ( Δ x → 0 ) \frac{\Delta s}{\Delta x}=\frac{\sqrt{(\Delta x)^2+(\Delta y)^2}}{\Delta x}=\sqrt{1+(\frac{f(x+\Delta x)-f(x)}{\Delta x})^2}=\sqrt{1+(f'(x))^2}~~(\Delta x\rightarrow 0) ΔxΔs=Δx(Δx)2+(Δy)2 =1+(Δxf(x+Δx)f(x))2 =1+(f(x))2   (Δx0)
  • Δ θ \Delta \theta Δθ:斜率, Δ θ Δ x = arctan ⁡ f ′ ( x + Δ x ) − arctan ⁡ f ′ ( x ) Δ x = ( arctan ⁡ f ′ ( x ) ) ′ ( Δ x → 0 ) = f ′ ′ ( x ) 1 + ( f ′ ( x ) ) 2 \frac{\Delta\theta}{\Delta x}=\frac{\arctan f'(x+\Delta x)-\arctan f'(x)}{\Delta x}=(\arctan f'(x))'(\Delta x\rightarrow0)=\frac{f''(x)}{\sqrt{1+(f'(x))^2}} ΔxΔθ=Δxarctanf(x+Δx)arctanf(x)=(arctanf(x))(Δx0)=1+(f(x))2 f(x)
  • κ = f ′ ′ ( x ) ( 1 + ( f ′ ( x ) ) 2 ) 3 2 \kappa=\frac{f''(x)}{(1+(f'(x))^2)^\frac{3}{2}} κ=(1+(f(x))2)23f(x)

参数方程表述

  • ( φ ( t ) , ψ ( t ) ) (\varphi(t),\psi(t)) (φ(t),ψ(t))
  • 之前的式子里 f ′ ( x ) , f ′ ′ ( x ) f'(x),f''(x) f(x),f(x)默认都是 d y d x , d 2 y d x 2 \frac{ dy}{dx},\frac{d^2 y}{dx^2} dxdy,dx2d2y
  • 考虑用 φ , ψ \varphi,\psi φ,ψ表示 d y d x , d 2 y d x 2 \frac{dy}{dx},\frac{d^2y}{dx^2} dxdy,dx2d2y
  • d y d x = ψ ′ ( t ) φ ′ ( t ) \frac{dy}{dx}=\frac{\psi'(t)}{\varphi'(t)} dxdy=φ(t)ψ(t)
  • d 2 y d x 2 = ψ ′ ′ ( t ) φ ′ ( t ) − φ ′ ′ ( t ) ψ ′ ( t ) ( φ ′ ( t ) ) 3 \frac{d^2y}{dx^2}=\frac{\psi''(t)\varphi'(t)-\varphi''(t)\psi'(t)}{(\varphi'(t))^3} dx2d2y=(φ(t))3ψ(t)φ(t)φ(t)ψ(t)
  • κ = ψ ′ ′ ( t ) φ ′ ( t ) − φ ′ ′ ( t ) ψ ′ ( t ) ( ψ 2 ( t ) + φ 2 ( t ) ) 3 2 \kappa=\frac{\psi''(t)\varphi'(t)-\varphi''(t)\psi'(t)}{(\psi^2(t)+\varphi^2(t))^\frac{3}{2}} κ=(ψ2(t)+φ2(t))23ψ(t)φ(t)φ(t)ψ(t)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值