数学的各个学科,要保证其理论的完备性,需要建立在基本公理的基础之上。一个理论,如果不进行公理化,很容易出问题。典型的问题,有集合论中的理发师悖论;以及古典概率论中,针对无限样本集表现出的悖论。
分析学,作为一个完备的学科,其公理化的过程必不可少。而其中,最基本的步骤,就是对实数集以及实数的运算,给予确切的公理化定义。这里的定义,包括代数和顺序定义。
公理1. 实数的代数定义.
(a)在实数集上定义两种运算:加法(+)和乘法()。它满足
- 对任意的实数x和y都满足,
和
是实数,也即实数集对加法和乘法运算封闭;
- 交换律,也即