Numpy中的数组拼接、合并操作(concatenate, append, stack, hstack, vstack, r_, c_等)

Numpy中提供了concatenate,append, stack类(包括hsatck、vstack、dstack、row_stack、column_stack),r_和c_等类和函数用于数组拼接的操作。
各种函数的特点和区别如下标:

concatenate提供了axis参数,用于指定拼接方向
append默认先ravel再拼接成一维数组,也可指定axis
stack提供了axis参数,用于生成新的维度
hstack水平拼接,沿着行的方向,对列进行拼接
vstack垂直拼接,沿着列的方向,对行进行拼接
dstack沿着第三个轴(深度方向)进行拼接
column_stack水平拼接,沿着行的方向,对列进行拼接
row_stack垂直拼接,沿着列的方向,对行进行拼接
r_垂直拼接,沿着列的方向,对行进行拼接
c_水平拼接,沿着行的方向,对列进行拼接

0. 维度和轴

在正确理解Numpy中的数组拼接、合并操作之前,有必要认识下维度和轴的概念:
ndarray(多维数组)是Numpy处理的数据类型。多维数组的维度即为对应数据所在的空间维度,1维可以理解为直线空间,2维可以理解为平面空间,3维可以理解为立方体空间。
在这里插入图片描述
轴是用来对多维数组所在空间进行定义、描述的一组正交化的直线,根据数学惯例可以用 i , j , k i, j ,k i,j,k来表示。
在一维空间中,用一个轴就可以表示清楚,numpy中规定为axis 0,空间内的数可以理解为直线空间上的离散点 (x i i i, )。
在二维空间中,需要用两个轴表示,numpy中规定为axis 0和axis 1,空间内的数可以理解为平面空间上的离散点(x i i i,y j j j)。
在三维空间中,需要用三个轴才能表示清楚,在二维空间的基础上numpy中又增加了axis 2,空间内的数可以理解为立方体空间上的离散点(x i i i,y j j j,z k k k)。

Python中可以用numpy中的ndim和shape来分别查看维度,以及在对应维度上的长度。直观上可以根据符号“[ ]”的层数来判断,有m层即为m维,最外面1层对应axis0, 依次为axis1,axis2…

>>> a = np.array([1,2,3])
>>> a.ndim      # 一维数组
1
>>> a.shape     # 在这个维度上的长度为3
(3,)

>>> b = np.array([[1,2,3], [4,5,6]])
>>> b.ndim     # 二维数组
2
>>> b.shape      # 在axis 0 上的长度为2, 在axis 1上的长度为3.或者可以感性的理解为2行3列
(2, 3)

>>> c = np.array([[[1,2,3], [4,5,6]]])
>>> c.ndim     # 三维数组
3
>>> c.shape      # 在axis 0 上的长度为1,在axis 1上的长度为2, 在axis 2上的长度为3. 或者可以感性的理解为1层2行3列
(1, 2, 3)

1. np.concatenate()

concatenate(a_tuple, axis=0, out=None)
"""
参数说明:
a_tuple:对需要合并的数组用元组的形式给出
axis: 沿指定的轴进行拼接,默认0,即第一个轴
"""
  • 示例
>>> import numpy as np
>>> ar1 = np.array([[1,2,3], [4,5,6]])
>>> ar2 = np.array([[7,8,9], [11,12,13]])
>>> ar1
array([[1, 2, 3],
       [4, 5, 6]])
>>> ar2
array([[ 7,  8,  9],
       [11, 12, 13]])

>>> np.concatenate((ar1, ar2))   # 这里的第一轴(axis 0)是行方向
array([[ 1,  2,  3],
       [ 4,  5,  6],
       [ 7,  8,  9],
       [11, 12, 13]])

>>> np.concatenate((ar1, ar2),axis=1)   # 这里沿第二个轴,即列方向进行拼接
array([[ 1,  2,  3,  7,  8,  9],
       [ 4,  5,  6, 11, 12, 13]])

>>> ar3 = np.array([[14,15,16]])  # shape为(1,3)的2维数组
>>> np.concatenate((ar1, ar3))   # 一般进行concatenate操作的array的shape需要一致,当然如果array在拼接axis方向的size不一样,也可以完成
>>> np.concatenate((ar1, ar3))  # ar3虽然在axis0方向的长度不一致,但axis1方向上一致,所以沿axis0可以拼接
array([[ 1,  2,  3],
       [ 4,  5,  6],
       [14, 15, 16]])
>>> np.concatenate((ar1, ar3), axis=1)    # ar3和ar1在axis0方向的长度不一致,所以报错

2. pd.append()

append(arr, values, axis=None)
"""
参数说明:
arr:array_like的数据
values: array_like的数据,若axis为None,则先将arr和values进行ravel扁平化,再拼接;否则values应当与arr的shape一致,或至多
        在拼接axis的方向不一致
axis:进行append操作的axis的方向,默认无
"""
  • 示例
>>> np.append(ar1, ar2)    # 先ravel扁平化再拼接,所以返回值为一个1维数组
array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 11, 12, 13])

>>> np.append(ar1, ar2, axis=0)     # 沿第一个轴拼接,这里为行的方向 
array([[ 1,  2,  3],
       [ 4,  5,  6],
       [ 7,  8,  9],
       [11, 12, 13]])

>>> np.append(ar1, ar2, axis=1)     # 沿第二个轴拼接,这里为列的方向 
array([[ 1,  2,  3,  7,  8,  9],
       [ 4,  5,  6, 11, 12, 13]])

3. np.stack()

stack(arrays, axis=0, out=None)
"""
沿着指定的axis对arrays(每个array的shape必须一样)进行拼接,返回值的维度比原arrays的维度高1
axis:默认为0,即第一个轴,若为-1即为第二个轴
"""
  • 示例
>>> np.stack((ar1, ar2))     # 增加第一个维度(axis0,之后的axis向后顺延:0—>1, 1—>2)
array([[[ 1,  2,  3],
        [ 4,  5,  6]],
       [[ 7,  8,  9],
        [11, 12, 13]]])

>>> np.stack((ar1, ar2), axis=1)     # 增加第二个维度(axis1,之后的axis向后顺延, 1—>2)
array([[[ 1,  2,  3],
        [ 7,  8,  9]],
       [[ 4,  5,  6],
        [11, 12, 13]]])

>>> np.stack((ar1, ar2), axis=2)     # 增加第三个维度(axis2,和axis=-1的效果一样,原来的axis0和axis1保持不变)
array([[[ 1,  7],
        [ 2,  8],
        [ 3,  9]],
       [[ 4, 11],
        [ 5, 12],
        [ 6, 13]]])
  • 关于维度增加的一种理解方式
    在这里插入图片描述

4. hstack、vstack和vstack

>>> np.hstack((ar1,ar2))    # 水平拼接,沿着行的方向,对列进行拼接
array([[ 1,  2,  3,  7,  8,  9],
       [ 4,  5,  6, 11, 12, 13]])

>>> np.vstack((ar1,ar2))    # 垂直拼接,沿着列的方向,对行进行拼接
array([[ 1,  2,  3],
       [ 4,  5,  6],
       [ 7,  8,  9],
       [11, 12, 13]])
       
>>> np.dstack((ar1,ar2))    # 对于2维数组来说,沿着第三轴(深度方向)进行拼接, 效果相当于stack(axis=-1)
array([[[ 1,  7],
        [ 2,  8],
        [ 3,  9]],
       [[ 4, 11],
        [ 5, 12],
        [ 6, 13]]])

5. column_stack和row_stack

>>> np.column_stack((ar1,ar2))   # 水平拼接,沿着行的方向,对列进行拼接
array([[ 1,  2,  3,  7,  8,  9],
      [ 4,  5,  6, 11, 12, 13]])

>>> np.row_stack((ar1,ar2))    # 垂直拼接,沿着列的方向,对行进行拼接
array([[ 1,  2,  3],
      [ 4,  5,  6],
      [ 7,  8,  9],
      [11, 12, 13]])

6. np.r_ 和np.c_

常用于快速生成ndarray数据

>>> np.r_[ar1,ar2]     # 垂直拼接,沿着列的方向,对行进行拼接
array([[ 1,  2,  3],
       [ 4,  5,  6],
       [ 7,  8,  9],
       [11, 12, 13]])
  
>>> np.c_[ar1,ar2]   # 水平拼接,沿着行的方向,对列进行拼接
array([[ 1,  2,  3,  7,  8,  9],
       [ 4,  5,  6, 11, 12, 13]])

7. 总结

对于两个shape一样的二维array来说:

  • 增加行(对行进行拼接)的方法有:
np.concatenate((ar1, ar2),axis=0)
np.append(ar1, ar2, axis=0)
np.vstack((ar1,ar2))
np.row_stack((ar1,ar2))
np.r_[ar1,ar2]
  • 增加列(对列进行拼接)的方法有:
np.concatenate((ar1, ar2),axis=1)
np.append(ar1, ar2, axis=1)
np.hstack((ar1,ar2))
np.column_stack((ar1,ar2))
np.c_[ar1,ar2]

相关代码可见:https://github.com/guofei1989/python_func_cases/tree/master/numpy_demos

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值